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1.0 INTRODUCTION 

A basic reason for studying unsteady flows is the pre- 
diction of the effect of unsteady aerodynamic forces on a 
flight vehicle.  The transonic speed regime is particularly 
important in this respect for the same physical reason that 
drag and other steady forces are generally higher than in sub- 
sonic or supersonic speed regimes.  Another characteristic of 
transonic flows is the potentially large phase lag between 
boundary motion and induced unsteady pressures.  These effects 
tend to increase the likelihood of aeroelastic instabilities, 
so that transonic speeds are most critical for aircraft flut- 
ter.  There is a clear and present need for accurate and effi- 
cient predictive techniques for unsteady transonic airloads. 
This need motivated the investigation of the perturbation me- 
thod for transonic flows about oscillating airfoils presented 
in this and a previous report.^- The present report contains 
a potpourri of analyses, numerical tests and calculated re- 
sults which generalize, verify and exercise the method intro- 
duced in Reference 1.  By way of introduction, the following 
description of the nature of unsteady transonic flows and the 
past and present attempts at describing the inherently nonlin- 
ear processes is presented. 

The physical mechanism underlying the build-up of pres- 
sure amplitudes and phase lags has been described by Landahl^ 
by considering the propagation of a low-frequency acoustic dis- 
turbance.  The upstream-facing portion of the disturbance (the 
"receding wave") travels at a rate which is essentially the 
difference between freestream speed and the sound speed.  In a 
transonic flow, this speed is so slow that acoustic disturbances 
may interact and build up to a finite amplitude.  In order to 
describe the phenomena, the steady or low frequency unsteady 
equations must necessarily be nonlinear, thereby providing the 
essential difficulty in the analysis of transonic flow.  It 
has been pointed out by Rott^, Landahl^ and others, however, 
that the unsteady equations may be linearized and uncoupled 
from the mean steady flow for high frequency disturbances near 
Mach 1.  These so-called "sonic theories" have been developed 
for both two and three dimensional wings by a number of inves- 
tigators^'^'-'. Many of these classical studies of the high 
frequency equation are summarized in Landahl's monograph^.  It 
is often the case, however, that the nonlinear low frequency 
regime is of greater practical importance for aircraft flutter. 
Fortunately, a linear system can be recovered for low frequency 
transonic flow, as demonstrated by Landahl^, by expanding the 
unsteady flow as a small perturbation about the nonuniform 

-1- 

-■■ -- MMM 



F I 
111 «  11 .HJ. i, ».i^JB-.u     i      mim i 1 '     111    "   ■l«L mmmmmmmm 

t 

steady flow.  The linear equation remains quite formidable 
since various coefficients are functions of the nonlinear 
steady flow so that numerical solution procedures, of which 
the present work is one, are indicated. 

Analytical or semi-analytical approaches to the solu- 
tion of the unsteady flow, based on this linearization about 
the steady flow, have recently been presented. Stahara anci^ 
Spreiter^ and Isogai"? have applied the "local linearization 
method, developed for steady, near sonic flows, to the nonum- 
form unsteady system. The approach is promising but its ap- 
lication to general supercritical flows is questionable. 

Of more practical interest for general applications are 
the numerical approaches which have become highly developed 
for steady flows in recent years.  Two basic finite difference 
techniques have been used; known generally as time dependent 
methods and relaxation methods.  The time dependent methods 
solve the complete set of conservation equations or the un- 
steady full potential equation by forward differencing in time. 
This approach has been applied to the calculation of steady 
flows as the steady limit of the time dependent solution.  The 
method can handle mixed flows and shocks within the accuracy 
of the finite difference mesh8.  Time dependent calculations 
of flows about two dimensional airfoils oscillating at super-  9 
critical Mach numbers have been reported by Magnus and Yoshihara 
and Beam and Warming10.  Such calculations are very important 
as they involve no inherent limiting assumption but they are 
quite expensive computer timewise.  Ballhaus and Lomax^ have 
presented time accurate solutions of the low frequency unsteady 
small disturbance potential equation.  Recent applications of 
the method15 indicate that it could be a very efficient approach 
to the oscillating airfoil problem. 

Another promising technique for both steady and unsteady 
flows, which mast be considered in a separate classification, 
is the finite element method.  The method has been applied to 
the oscillating airfoil problem by Bratanow and Ecer^ for com- 
pressible flow and recently by Chan and Brashears^ for tran- 
sonic flows. 

The other class of numerical techniques which have received 
wide application to steady transonic flowslS^lö, are the relax- 
ation Methods.  Ehlers1? and the present authors1 have reported 
the application of relaxation methods to unsteady transonic flows 
about harmonically oscillating airfoils.  Both methods are ap- 
parently similar except that the work presented here concentrates 
in a consistent manner, from formulation through results, on the 
low frequency regime.  In the approach, the flow is considered 
as a small perturbation on the steady flow which results in a 
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pair of boundary value Pf "-L'^The'aquluon^or'thS'steaay 

re^raflo^^rerurrllrsrfn^a'ured'-lor araa.y «O« by 
Murman and Cole10. 

Since  ^ffTS^iS^^ivK^SoSSrSS are 

generalizations to the bf lc^^s
P^S^eat high« order 

?heSe ^•"^"J^p^f^^trÄallSSi, wind tunnel 
frequency effects, suPe^soniC "!,, nlanar winq flows are pre- 
wall effects and three 4}«»«i?S tliSS*ti5S results.  Sec- sented in Section 3.0, along with ^J^ative r     a 

^ricr^^^oL^Ä^ 
culated results for a Nf ^^fs^face roLtlon in the Mach ing in P^ch, plunge and control surface ro       * to 0.2 
number range 0.8 to 1.2 a"d reci^ airfoil angle of attack 
are presented in ^f^^^^^6^iefly sLdild and the re- 
and wind tunnel wall e"!^s ^e b^r^ lts for unsteady 
suits presented in that section,  ^e resuir freedom 
aerodynamic coefficients are *se<a ^n a thread JT J^^ 7 ^ 

plnanv "secrion 8?0 s^nafizes study results and comments on 
tircir^enfstate of development of the method. 
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2.0    FORMULATION AND SOLUTION PROCEDURE 

Small disturbance theory is the principal analytical 
tool for all speed ranges and has become increasingly impor- 
tant in the transonic speed range in recent years.  The gen- 
eral theory including the unsteady small perturbation approach 
used in this work is summarized in Section 2.1.  General!ja-0 
tions of the basic method, described in detail previously » 
to include higher frequency effects and an extension of the 
method to three dimensional planar flows are included in the 
summary.  The required numerical solution methods for the 
steady and unsteady systems are described in Section 2.2 

2.1   Small Perturbation Approach to Unsteady Transonic Flow 

M. 

U 

M<1 

FIGURE 1. SCHEMATIC OF AIRFOIL GEOMETRY AND TRANSONIC FLOWFIELD 

The problem of interest is the flow about an airfoil 
(two dimensional) or planar wing (three dimensional) oscil- 
lating with various flexible or rigid body degrees of freedom 
in the transonic speed range.  The airfoil geometry, flowfield 
schematic and coordinate definition are given in Figure 1 
above.  Rectangular coordinates (x,y,z) are fixed to the air- 
foil leading edge with origin at the wing root and U, M , a^ 
are the freestream velocity. Mach number and sound speed re- 
spectively. The airfoil has a thickness ratio 6, which is the 
airfoil maximum thickness divided by its chord c, an angle of 
attack a and a semi-span b.  The assumption is made that 6<<1 
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and a is of the same order of magnitude as $,  Also, the os- 
cillatory motion of the airfoil is assumed to be described 
by a small non-dimensional displacement e«6 and a reduced 
frequency k=(i)c/U based on airfoil chord where H IS the fre- 
quency of oscillation. 

Assuming inviscid, isentropic flow, the problem can 
be reduced to the solution of a single equation for a velo- 
city potential plus the tangency boundary condition on the 
airfoil surface.  As is well known, the derivation of a small 
disturbance theory for transonic flows requires a singular 
perturbation approach.  The following scaling is thereby 
introduced: 

x = 5 , y = [(l+Y)^]1 'I z = [(1+Y)5M*] 
X/3 

2/3 
[(1+Y)ÖM^    g 

t ■   :—     c t 
Mi 

(1) 

and the total potential is expanded about the uniform flow: 

2/3 

^ = Uc£ + .J ^c— 1/3 $(x,y,2,t) + 
[{1+Y)M4] 

(2) 

Retaining all terms of leading order in the total potential 
eqSatiin and boundary conditions results in the following 
form for the unsteady small disturbance system. 

^-♦x^xx + *yy + hz  = 2*xt + j ^tt 
(3) 

where the transonic similarity parameters are: 

d-Mi) 
K  ■ 

[(l+Y)6Mil2/3' 

K 
Q   ■     -    2/3 [(in)fiMi] 
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with boundary conditions 

4,- ■ s^^lv.«^' (4) 

. I 0 * x < 1 
on y = + 0 I 

( 0 ^ z 1 b 

[• i + S*t = 0, on y=0 I* > 1 
0 < z ^ b 

(5) 

yx ^ y     2 
0 as x

2+y2+z2 (6) 

where f - is the unsteady airfoil shape function (Equation 
m bel8*) on the upper and lower surfaces respectively, and 
where n denotes a jump in the enclosed quantity between y = 0 
and 0+ iHs noted that the airfoil tangency boundary con- 
ation' (Equation 4) and the Kutta condition (Equation 5) are 
applied in the small disturbance manner on y = 0. 

The system" of Equations 3-6 provides a ^^f1™ °£ 
the unsteady airfoil problem in the non-linear domain, which 
incluSes^Wields w?th shocks.  Certain terms in the above 

sss tKo^^pp^SKiS ^ "^o H£- -e 
btb? S Sef Än^y 5?^^^ TurZS^**  g«) , 
n^essary ?or oscillations in plunge for example, is examined 
iriec?Ion 3.1 with some comment as to the effect on the ac- 
curacy of the theory. 

The low frequency approximation results in significant 
numeric!? advantage when solved by a ti.e ^Pf^^^^^ 
as pointed out recently by Ballhaus and ^^'^^^IIZ^ 
to  the solution of the above system have yet to be fully ex 
ploited for the unsteady aerodynamics problem. 

The approach presented herein for solving the non-linear 
system given^ve (Equations 3-6) is to expand the perturba- 
tion po?ential function in terms of the ^feady boundary dis- 
tirSance ««X.  From this point on all tildas (M will be 
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dropped with the understanding that all variables are scaled 
variables.  Harmonic boundary disturbances are explicitly 
treated: 

f(x,z,t) ■ f (x,z) + ef (x,z)e 
o • 

i^t (7) 

and the perturbation potential is expanded as follows: 

LOt 
(Hx.y^t) = ♦•(«»y»«) + r *1(x,y,z)e   ♦ (8) 

Substituting this into the perturbation potential equation plus 
boundary conditions and combining terms results in the follow- 
ing pair of boundary value problems for <r and $  respectively. 
(In the following text, the superscript has been dropped from 

v  ^x xx  yyy   zz 

#• = 
. iO i x i 1 

f'(x^),  on y = ± 0 { 
0 |o i z i b 

[^•j =0,  on y = 0 |x ^ 
\ 0  <,   z <,  b 

(9) 

and 

(4°) +(4.°) +(<))0) - 0  as x2+y2+z2 
x    y    z 

\^ "♦'x xx yy zz  Txx     x    

A = C^iltfci  on y = ± 0 

[4 + ik0] =0,  on y = 0 

0 i x i 1 

0 i z i b 

(x > 1 

(0 i z < 

(10) 

Zj..,*.!.,*. (4 ) +(t ) +(4» ) ♦ 0,  as x'+y'+z'-*« 
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System 9 is recognized as the usual formulation for steady 
transonic flow and system 10 is the formulation for the un- 
steady perturbation thereof.  It is noted that the governing 
equation for f is linear but of the same mixed elliptic/ 
hyperbolic type as the steady solution.  It is also noted that 
<i>  is in general complex thereby permitting phase shifts be- 
tween field quantities and the boundary disturbance.  As be- 
fore, underlined terms in system 10 are neglected for a con- 
sistent low frequency approximation.  Also for two dimensional 
airfoil sections, the z dependence on all quantities and the 
4  terms in the equations are neglected. 

The main physical quantities of interest are the pressure 
coefficient and airfoil force coefficients.  The pressure co- 
efficient, defined in the usual manner, is given by: 

2/3 

Cp "  [(I+Y)MM1/3 

.-„  - int. 
(C0 + eC^e  ) 
P    P 

(11) 

where the steady and unsteady scaled pressure coefficients are 
given to leading order ir the small disturbance approximation 
by: 

C0 = -2<t)0, 
P     x 

Cn  = -2(4  + iU) 
P      x    

(12) 

The formulations of the boundary value problems are 
essentially complete with the exception of the practical matter 
of setting the boundary conditions away from the airfoil, which 
depends on the particular problem; subsonic or supersonic free 
field, wind tunnel wall etc.  Asymptotic far field solutions 
to Equations ]0 have been developed for two dimensional sub- 
sonic or supersonic free air or wind tunnel flows and for three 
dimensional subsonic flow.  These solutions are described in 
Section 3.0 as they apply to the various generalizations of the 
method and are summarized for completeness in Appendix A. 

2.2   Finite Difference Solution Method 

The numerical solution procedure for the boundary value 
problems for the steady and unsteady perturbation potential, 
is based on the mixed differencing, line relaxation procedure 

-8- 
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developed by Murman, Cole and Krupp  '  .  They pointed out 
the essential ingredient for the success of relaxation pro- 
cedures for the steady transonic potential equation.  The key 
to the approach is to account for the local nature of the flow 
(elliptic in subsonic regions, hyperbolic is supersonic regions) 
in the finite difference approximation to the governing equa- 
tions.  The solution method used in the present work for the 
steady perturbation potential, (fr0, is patterned after the method 
for general lifting airfoils developed by Kruppib.  Extensions 
of this method for steady flows, to treat supersonic freestream 
flows, wind tunnel wall effects and three dimensional flows are 
presented in Section 3.0.  The version of this technique im- 
plemented for the two dimensional unsteady perturbation is de- 
scribed here.  Generalizations of the unsteady solution method 
are likewise presented in Section 3.0. 

The linearity of the governing equation for <p  would 
suggest that many of the powerful techniques of classical 
analysis could be applied.  The equation is seriously compli- 
cated, however, by the fact that various coefficients are 
functions of the nonlinear steady potential, for which the 
only general solution methods are numerical.  In view ot tnis 
complication and the success of the mixed differencing relax- 
ation procedure for the steady potential equation of similar 
type, it was decided to use this same method to develop un- 
steady solutions. 

j=JM 
*»* 

ff B 
1/3 

I 
i=i o 

Wake b.c. 

>— Airfoil b.c. 

(K-^)(t>xx+<J)yy-{^x+2ifi)(Dx+kn(!.=0 i=IM 

j = l 

FIGURE 2. SCHEMATIC OF NUMERICAL SOLUTION DOMAIN 
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Consider the boundary value problem for the unsteady 
transonic potential, with numerical solution domain indicated 
schematically in Figure 2.  In the numerical scheme, a rec- 
tangular mesh with general grid line spacing is overlayed on 
the solution field in physical x, y coordinates.  Uneven grid 
spacing makes it possible to concentrate grid points near the 
airfoil slit and in regions where rapid changes in the po- 
tential or its derivative (wing leading edge, shocks, etc) 
are expected and to expand the grid in a regular manner out 
to the boundaries of the mesh.  The required solution for (})0, 
which does not depend on (j), is solved independently on the same 
or a more refined grid and the resulting solution stored on 
magnetic tape.  The converged solution so obtained is then used 
in the solution process for the corresponding 4).  This approach 
has the benefit that ty0  need not be regenerated for each un- 
steady boundary disturbance or reduced frequency of interest. 

The local nature of the equation at each grid point is 
determined by the corresponding value of (K-((»x)i -j = vi»j at 

the same grid point.  Then if K-4)x > 0 (elliptic! the x deriv- 
atives of (J) are center differenced and if K-^x <  0 (hyperbolic) 
the x derivatives are backward differenced.  Near the sonic 
line at so-called "parabolic points," the center difference 
form for the x derivatives of (j) are used.  The finite differ- 
ence approximation to the unsteady potential equation are thus 
summarized as follows: 

V. . > 0, elliptic 1>J .  

v.   . (<()    )? . + U   )E.  • ifj 
Txx/i,]       yyy I,] (13) 

V.    .   <   0,   hyperbolic 

V1?   . (4»     )H   .   +   (4)     )? i,D VTxx l,j yy'i,] (14) 

-   [2ifi+(^x,i,j1    ^A,!   +  k^i =  0 
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V  .<0.V. -,   >0, parabolic 

f 

V. . (4)  )H  + (* )E. (15 

-[2i.+ (^x)^jl (Vi^ + W = 0 

Where V^ -i v" ^ and the elliptic (superscript E) and hyper- 
bolic (superscript H) difference forms are centered or back- 
ward differenced in the usual manner. 

Using the above forms, the finite difference equations 
are set up for each column (x = constant) in the grid.  Appro- 
priate finite difference approximations are made for the body 
boundary condition, Kutta condition and farfield boundary to 
effectively close the system of equations.  The resulting 
sequence of linear algebraic equations is solved by Gaussian 
elimination.  After each column is solved, it is rejaxed with 
a variable relaxation factor, depending on the local nature of 
the solution.  This process is repeated for each column in turn, 
sweeping the grid from left to right until the change in 4) for 
all grid points during one grid sweep is less than some arbi- 
trary small amount.  Iteration is also required on the unknown 
airfoil circulation which is always over-relaxed and which is 
updated along with the farfield at regular intervals.  A grid- 
halving routine has been implemented with considerable improve- 
ment in the efficiency of the method.  Complete details of the 
differencing and treatment of body boundary condition, Kutta 
conditions and farfield boundary conditions are presented in 
References 1 and 20. 

-11- 
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3.0 GENERALIZATIONS OF THE METHOD 

One of the main goals of the research reported here was 
to generalize and extend the method and solution procedure to 
treat higher frequency effects, supersonic freestream flows, 
wind tunnel wall effects and three-dimensional planar wing 
flows.  Pertinent studies relating to these developments are 
summarized in this section and typical calculated results are 
presented.  In particular, the development and implementation 
of boundary conditions required ior the treatment of supersonic 
freestream flows, wind tunnel flows and three dimensional sub- 
sonic flows are discussed in this section and summarized in 
Appendix A. 

3.1   Higher Order Frequency Effects 

The previous formulation of the unsteady flow problem 
was restricted to low reduced frequencies k % 0(6^) and as a 
result did not include the effect of plunge (or the so-called 
"piston pressure" component) since this is a second order 
(0(k)) effect at low frequencies. As summarized in Section 2, 
the formulation can be generalized to include higher frequency 
effects and therefore explicitly treat the effect of plunging 
motion on all unsteady modes.  Since all previous results as 
well as the unsteady results (for pitch and control surface mo- 
tion) presented in this report used the consistent low frequen- 
cy formulation, it is important to examine the effect of the 
high frequency terms on the results for reduced frequencies up 
to k = .2. 

The generalization to the formulation is accomplished 
by Plaining the ^tt term in the full potential equation as 
well as the unsteady terms in the airfoil boundary condition 
and definition of pressure coefficient.  There is some ques- 
tion about the validity of the resulting small disturbance 
equation (Equation 3) for general frequencies but it is ac- 
cepted by most authors as the lowest order unsteady small 
disturbance equation.  Before proceeding with the linearized 
unsteady perturbation analysis and the comparison of tne low 
frequency to the generalized results, it is instructive to 
examine the governing equation in some detail to point out 
the essential difference between the low frequency approxima- 
tion and the present more general formulation. 

-12- 
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3.1.1  Characteristic Analysis of Governing Equation 

The governing equation is classified as a quasi-linear 
equation of hyperbolic type with the non-linearity concentrated 
in the coefficient (K-^) of the (txx term.  This coefficient 
is essentially the deviation of the local flow velocity from 
sonic-velocity and for the purposes of the following analysis 
let K-#| = V.  For any point (x,y) in the two dimensional 
physical plane the equation can be linearized in the usual 
manner and is written as follows: 

V A   + yyy    Yxt 
k 

tt 
■ 0 (16) 

It is noted that tildes have been dropped from all variables 
with the understanding that they are scaled variables.  The 
hyperbolic nature of the equation as well as the essence of 
the low frequency approximation can be made apparent by exam- 
ining the "Monge cones" associated with the equation at a 
point.  Introducing the following transformation: 

5 = x 

n -*-/lviy 
T = Vt + X 

(17) 

the canonical form of Eq. (16) becomes; 

hi  + *nn ' U 0
TT 

= 0 (18) 

where 

u = 1 + ^v 

-13- 
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The characteristic lines in the (x,t) plane are given by the 
section of the Monge cone in the (Cn) plane which from Eq. 
(18) are: 

i ' N/U'I £ = constant 

or in x,t coordinates: 

t - y   (1 1 >/|n|)x = constant (19) 

Receding Wave ' 

Advancing Wave 

FIGURE 3. CHARACTERISTICS OF SMALL DISTURBANCE POTENTIAL 

EQUATION      -- 

The two families of characteristics at a subsonic (V > 0) 
point are shown in Figure 3.  They physically represent the 
locus of the wavefronts fof' the upstream facing or "receding" 
wave and the downstream facing or advancing wave.  The slope 
of each curve is the inverse of the wave speed in scaled coor- 
dinates.  It is noted that in the low frequency approximation 
M = 1 so that the slope of the downstream characteristic is 
0 and the advancing wave speed is infinite.  Thus this approx- 
imation effectively neglects the effect of the advancing wave; 

-14- 
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the physical assumption being that the advancing 
rapidly away from the airfoil, and therefore hnve 
effect on the flow as compared to the receding w 
mains in the neighborhood of the airfoil.  It is 
near a shock or compression through sonic veloci 
the slope of the upstream characteristic *   * so 
waves from downstream of the sonic point accumul 
sonic point and can build up to large amplitude 
This phenomenon is responsible for the inherent 
of transonic flow as described by Landahl2. 

waves move 
a negligible 

ave which re- 
noted that 

ty, V > 0 and 
that receding 
ate at the 
disturbances. 
nonlinearity 

As the reduced frequency increases, u becomes appre- 
ciably greater than one so that the slope of the downstream 
characteristic increases away from zero and the cor-esponding 
advancing wave speed decreases.  Thus the advancing wave be- 
comes more important as the frequency increases, and could in 
fact become equally important as the receding wave for reduced 
frequencies of order 1.  The generalized theory presented here 
includes the receding wave and would therefore account for such 
higher frequency effects. 

One final note before leaving the characteristic analy- 
sis concerns the genesis of the so-called "sonic theories". 
It is noted that for very high frequencies (u ♦ 00) and for lo- 
cal Mach number everywhere very close to sonic l-NU+O or V^-O 
the upstream and downstream characteristics and in fact the 
Monge cone coalesces to a single vertical line.  In this case 
the upstream or downstream communication through the •I'xx term 
becomes negligible so that the governing equation reduces to 
the linear equation: 

*vv - 2 *xt - ^tt = 0 (20) 

which for harmonic disturbances has a reduced wave equation 
form: 

yy 
- 2 4), - £* = 0 (21) 

mmmmm 

The equation is parabolic and can be solved by classical meth- 
ods leading to the theories valid for high frequency sonic flow. 
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3.1.2  Unsteady Perturbation Analysis 

The development of the linearized unsteady perturba- 
tion for the general unsteady small disturbance system pro- 
ceeds in the same manner as described in detail for the low 
frequency system in previous work^- and as summarized in Sec- 
tion 2.  The resulting system of equations (Eq. 10) varies 
from the low frequency theory by way of the addition of fre- 
quency dependent terms in the governing equation, body bound- 
ary condition and wake condition.  The treatment of these 
terms in the finite difference solution method is straight- 
forward and they have been added to the computer programs 
developed in the study as an option thereby facilitating the 
comparison of the low frequency formulation to the present 
formulation.  Some comments are contained in this section 
concerning the implementation of these various changes to the 
method. 

The governing equation for the unsteady perturbation 
potential requires but the addition of the kfil term which in- 
cludes the advancing wave in the formulation.  The term is 
included in the finite difference equations in the obvious 
manner.  Of greater practical importance to the results of 
airfoil pressures at low frequencies are the addition of un- 
steady terms to the body boundary and wake condition and to 
the definition for pressure coefficients.  This is because 
these terms directly affect the flow near the airfoil whereas 
the modification to the field equation indirectly affects the 
flow about the airfoil.  For example, the new body boundary 
condition is: 

4) = «-s. + ikf (22) yy  9x    c 

It is noted that the low frequency approximation neglects the 
effect of boundary motion on the downwash including only the 
effect of the quasi-steady change in airfoil slope.  As noted 
earlier, the pure plunging mode (fr = -1) results in the null 
solution (());0) for the low frequency formulation but is in- 
cluded in the present formulation.  It is expected that the 
addition of the plunge motion to the downwash at the wing will 
have its greatest effect on the out of phase component (Im^) 
of the solution and should therefore affect the phase of the 
resulting airfoil pressures.  Based on the general form of the 
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body boundary conditions and definition of pressure coeffi- 
cient (below) it is expected that this effect will be of 
0(k) . 

The other change in the formulation involves addition 
of the unsteady term to the equation for the small disturbance 
pressure and the resulting effect that this has on the wake 
condition.  The equation for the unsteady component of the 
scaled pressure coefficient is: 

Cr. " -^v + ik*) 
(23) 

Again, for low frequencies, the primary effect of the general- 
ized formulation will be on the out of phase (Im Cp) component 
of the pressure. 

The Kutta condition requires that the jump in pressure 
at, and downstream of, the airfoil trailing edge be zero: 

[♦. * S- • A41  + ik A(t» = 0 (24) 

on y = 0, x ^ 1 

where kty   is the jump in potential across the wake.  Eq. (24) 
can be solved explicitly to give: 

&4 = A4.te e 
ik(x-l) (25) 

y = 0, x i: 1 

where A^te is the JumP in potential at the trailing edge equal 
to the airfoil circulation.  It is recalled that in the low 
frequency approximation A<j) = A<l>te so that this generalization 
involves an oscillatory change in phase of the wake jump con- 
dition due to the downstream facing wave. 
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The generalized forms for the body boundary condition 
(Eq. 22)   wake condition (Eq. 25) and pressure coefficient 
(Eq. 23) are incorporated into the finite difference equa- 
tions in an analogous fashion to the low frequency version 
discussed in detail in Reference 1 and they need not be re- 
peated here.  The finite difference solution method also 
proceeds in the same manner and the comparison calculations 
presented in the next section indicate that the generaliza- 
tions described here have little if any effect on convergence 
or other numerical details of the scheme. 

3.1.3  ResuVts for the Generalized Formulation 

Results are presented in this report using the low 
frequency approximation for various unsteady modes of oscil- 
lation and for reduced frequencies up to k = .2.  It i« ap- 
propriate to verify the accuracy of these results in light 
of the higher order frequency effects discussed above.  To 
this end, calculations have been performed for a flat plate 
oscillating in pitch in a subsonic stream and for a NACA 64A410 
airfoil oscillating in pitch and plunge at a supercritical Mach 
number.  Results for the low frequency formulation are compared 
to the modified formulation and to results of alternate formu- 
lations. 

Results for the flat plate airfoil oscillating in pitch 
[ (f'^-l-ikCx-Xp) ] at na>=.l  and a reduced frequency k = .2 are 
presented in Figure 4.  Distributions of the Real and Imaginary 
parts of the jump in pressure coefficient across the airfoil 
per unit angle of attack are shown.  The results calculated by 
the present method in its approximate low frequency and gener- 
alized form are compared to the corresponding results calcu- 
lated by the doublet-lattice method21.  The calculations are 
for perturbations about a uniform U0 i   0) mean flow and the 
generalized results should compare within numerical error to 
the doublet-lattice results.  Indeed, as shown in the figure, 
the results of the high frequency formulation compare within 
a few percent to the doublet-lattice solution.  It should be 
pointed out that the present method used 26 finite difference 
points on the airfoil and the doublet-lattice method used 25 
chordwise boxes so that they are being compared on the same 
basis in terms of numerical definition.  Results using the 
low frequency approximation are also shown in Figure 4 and 
they indicate the expected effect of the high frequency terms 
on the out of phase component (Imaginary part) of the solution. 

The corresponding results for a NACA 64A410 airfoil 
with a mean angle of attack of 2° oscillating in pitch about 
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the leading edge at k - .2 are shown in Figures 5 and 6.  Fig- 
ure 5 presents the unsteady component of lift as a function of 
angle of attack (or time) and Figure 6 gives the perturbed 
pressure coefficient distribution over the airfoil.  In Fig- 
ure 5 the results of the low frequency and generalized fre- 
quency formulation are compared to the "exact" numerical re- 
sults of Magnus and Yoshihara^ (see Section 5 for more details) 
Note that for an integrated quantity such as lift the higher 
order frequency effects produce but a slight change in magni- 
tude and phase.  It is noted that both formulations compare 
surprisingly well with the Magnus and Yoshihara results.  The 
comparison of pressure distributions in Figure 6 shows the 
slight effect of the high frequency terms on the in-phase com- 
ponent and a somewhat larger effect on the out of phase compo- 
nent; similar to the result for the fully subsonic flow.  As 
an aside, a comparison of Figures 4 and 6 show the large tran- 
sonic flow effect for an airfoil with a practical thickness, 
camber and mean angle of attack.  The comparison with the 
Magnus and Yoshihara results given here and in Section 5 show 
that the present theory, in either its low frequency approxi- 
mate form or its general frequency form, model these non- 
uniform flow effects.  These strong transonic flow effects are 
likewise shown in Figure 7 which presents results calculated 
using the present method for the same NACA 64A410 oscillating 
in uniform plunge at k = .2.  A comparison of the perturbation 
pressures due to pitch and plunge in Figures 6 and 7, respec- 
tively show that for low frequencies, pressures and forces due 
to plunge are, in magnitude, approximately 20 percent of the 
pressure and forces due to pitch.  This is consistent with 
the estimate of higher order frequency effects which indicate 
that such effects are 0(k). 

In summary, the generalizations of the low frequency 
theory to include higher frequency effects, necessary for 
the treatment of plunge oscillations, would seem to give an 
accurate representation of such effects.  The comparisons 
presented here show that these effects are 0(k) m the low 
frequency regime so that the generalized formulation should 
be used for all unsteady modes for reduced frequencies as 
large as k = .2.  Since the high frequency terms do not seem 
to degrade the efficiency, convergence or stability of the 
numerical solution method, the generalized formulation pre- 
sented here would seem to be recommended over the previous 
low frequency formulation. 
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3.2 Supersonic Freestream Calculations 

The theory and numerical solution method described in 
the report applies equally well to subsonic or supersonic 
freestream flow.  The application of the method to supersonic 
flows, the subject of this section, requires that certain de- 
tails of the method, in particular the treatment of the far- 
field condition, be modified.  This generalization has been 
accomplished for small disturbance steady flows by Murman22'23 

and his approach is followed in the present work as summarized 
in Section 3.2.1.  Other details concerning the treatment of 
steady supersonic flows which were considered during the pre- 
sent research are also discussed in that section.  The ana- 
logous treatment of unsteady supersonic flows, the prime ob- 
ject of this research, is discussed in Section 3.2.2. 

3.2.1  Steady Flows With Supersonic Freestream 

The primary generalization to the numerical solution 
method for treating supersonic freestream flows involves the 
derivation of a farfield boundary condition.  The asymptotic 
solution available for subsonic freestream flows (Appen- 
dix A) clearly do not apply.  Even if such a solution were 
convenient to derive for supersonic flows, the application 
of a Dirichlet boundary condition is not appropriate and 
could lead to numerical difficulties for a hyperbolic far- 
field flow.  The method used here involves developing asymp- 
totic approximations to the characteristic relations for the 
hyperbolic form of the transonic potential equation (Eq. 9), 
and to apply those relations as boundary conditions on the 
far boundary of the grid. 

Letting u = (fi° and v = (J>y the characteristic directions 
and relations for the two dimensional steady transonic poten- 
tial equation are respectively: 

^Z = du = ±(U.K)^ 
dx    dv (26) 

The characteristic  relations can be  immediately  integrated 
to give: 

(u-K) 
3/2 

V   =   R on &- dx (u-K) -»5 (27) 
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where R* are the Riemann invariants.  It is noted that far 
upstream the flow is uniform so that u=v=(M0 as x-»--».  This 
uniform flow condition provides the needed upstream boundary 
condition which is applied as a Dirichlet condition on  ^. 
In the transverse direction (y**»J away from the airfoil the 
characteristic relations may be approximated under the as- 
sumption that u<<-K.  Expanding equation 27 for small u gives: 

•    +v+|/=Ku  + -^—    +...   UR1       on ^ =   ±   -L^       (28) 

It is noted that K<0 for supersonic freestream flow.  For 
y-++* the assumption is made that there is no disturbance at 
upstream infinity (R^O) so that taking the first order ap- 
proximation to the incoming characteristic relation gives: 

*o = + /^K 4,0  as y^±oo (29) yy x 

Thus as long as the transverse boundaries of the finite dif- 
ference grid are supersonic and far away from the airfoil 
Equations 29 provide an accurate representation of the far- 
field solution. 

This boundary condition is incorporated into the 
finite difference procedure in the same manner as the airfoil 
boundary condition. That is, on the top and bottom of the 
rectangular grid (4>yy)i.j is differenced as a one-sided dif- 
ference using Equation 29  in the finite difference equation. 
For example on the top boundary (y=ymax)I 

^o    ml    4,0    _   LU- i4J ^  for j=JM       (30) 

yyi,j    &yj-l 

With ii from equation 29 and the backward difference form 
for <j)0  (since the flow is supersonic): 
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yy 1»3 ^-i Iri^T KrM'^H-1'^-2'3) 
i 

I (31) 

^j-1 
♦I   ■-^0   ■    i 

Using this relation in the finite difference analog to the 
partial differential equation (Eq. 14 above) effectively 
closes the system of equations for a collumn of grid points 
and ?he solution proceeds as before.  The downstream (X-K») bound 
ary of the grid requires no special treatment, as long as the 
flow there is supersonic, because of the lack of upstream in- 
fluence in supersonic flow. 

In order to illustrate the method, fully supersonic 
results are presented in Figure 8 and 9 for a 6 percent thick 
circular arc airfoil at M^ = 1.5 and a 0.5» wedge at M =2.0 
respectively.  The circular arc solution is compared to linear 
supersonic theory which would be quite accurate fof this case. 
The calculation verifies the application of the method to 
supersonic freestream flows and demonstrates that the tran- 
sonic theory reduces to linearized supersonic theory for M^i. 
The present solution shows a slight degree of nonlinearity in 
this case as well as demonstrating the numerical smoothing of 
the shock waves at the leading and trailing edge of the air- 
foil.  The wedge solution (Figure 9) was performed to verity 
the accuracy of the scheme for very weak oblique shocks.  Re- 
sults for three grid designs with different values «f.Ay are 
shown which indicate that the sharpness of the shock is strongly 
dependent on grid design.  The "overshoot" in the shock Dumps 
is most likely due to the extrapolation procedure used for de- 
fining values of potential on the airfoil since it is not evi 
dent in the shock jumps away from the airfoil.  The overshoot 
is also dependent on the strength of the shock as shown by the 
result for a stronger oblique shock in Figure 10. For this 
case with an order of magnitude stronger shock no overshoot 
is evident.  It is also noted that the overshoot can be largely 
eliminated even for the weak shock case by the proper choice 
of Ay in the first grid point above the airfoil.  This indi- 
cates that a more intelligent extrapolation method for defin 
ing the solution on the body, such as, for example, extrapola- 
tion along characterisitics (Eq. 26), would also elliminate 
the overshoot. 
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1 
To examine the accuracy of the basic hyperbolic dif- 

ferencing scheme, a general higher order finite difference 
form has been implemented on a trial basis.  The method uses 
an additional upstream point for the finite difference forms 
for (j)w and cb0 i 

X    Txx 

((0°) Tx 
If J 

2-v ) wi  *i-l . wi-l  vi-2 
Ax i-1 Ax. 0 1-2 

(32) 

(i-v) (♦UrH-a    »U^UaI 
-T-| Ax. , 

i-l 
Ax i-3 ( 

rxx 
i»D 

2(2-v) 
Ax._1+Axi_2 

2(l-v) 
Ax. 0+Ax. 1-2   i 

k«-A< n-n-i   ♦ 
Ax i-l 

t n-rn-2 
-3 |  A^ 1-2 

0i-l-*0l-2 ! 
Axi-2 

^i-2-n-3 
Axi-3 

(33) 

For v=l the scheme reduces to that presently used and for 
v=0 it is a second order accurate hyperbolic scheme after 
Richtmeyer and Morton23,  Results for the 2° wedge with M^ 
1.25 are shown for \)=0  and v=l in Figure 10 for comparison. 
Both methods give the same shock jump and differ only in the 
sharpness of the shock.  This comparison indicates that the 
three point scheme used in this work is quite accurate and 
in fact gives sharper shock waves than higher order accurate 
difference schemes.  Figure 10 also shows the solution away 
from the surface (at y = .2 and .4) which indicates that ob- 
lique shock waves away from the surface undergo considerable 
numerical smoothing.  Note, however, that the shock jump con- 
dition is retained.  The degree of shock smearing indicated 
is an attendent result of any shock capturing numerical method 
and can probably be elliminated only by using shock fitting; 
a rather complicaLed prospect for general transonic flows. 
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As described in previous work1 and summarized in 
Section 2, the numerical solution method takes no special 
Tcconnt  of shock waves.  As shown in the above results the 
procedure is adequate for oblique shocks, but as recently 
ported out by Murman24, the treatment of strong shocks 
(supersonic to subsonic transition) is inaccurate.  The ac 
curacy of the method can however be improved by »sing a 
soecial "shock point operator" (SPO) as suggested by Murman 
ofby isinfshock fitting, as implemented recently ^ Cheng 
and Hafez2*. since strong shocks are important for tiansonic 
flows, especially low supersonic flows, it was decided to 
implement a form of Murman's shock point operator. 

A shock point in the finite difference approximation 
to the transonic potential equation is defined as a point 
(i,j  when (K-^.i 4«) and (K-^i ,>0.  At such a point, 
the finite different-"equation is generalized to: 

a(KV)
C VV

C  + MK-07 i^x v  yX 1,]YXX.  • x 1,J xxif 
+ 0 yy i/D 

= o (34) 

where superscripts b and c indicate backward and central 
differencing.  Murman suggests ct=ß=l as the form which pro- 
vided "conservative" finite difference scheme  However, 
as can easily be seen (and as noted by Murman) this is in- 
consistent with the governing ««IWtloa to O(Ax).  In the 
present work it was decided to use 0-1/2, 1-1/2 which retains 
Ihe consistency of the finite difference approximation to 
the transonic potential equation but is nonconservative by 
MuLan's definition to 0(Ax).  This form was jhosen because 
consistency is believed to be of utmost importance and also 
s?nci the conservation property of ^e finite difference 
scheme depends upon the definition of the variation of a 
quantity over the sides of a finite difference cell.  This 
can clearly only be defined to first order especially near 
a shock  In short it is felt that the shock point differ- 
encing ised is consistent with the formalism of shock cap- 
turing and could only be improved by shock fitting. 

Results using the shock point formalism are shown in 
Ficrures 11,12, and 13 at the end of the section.  Figure 11 
presents the pressure coefficient along "» ««*« ^Mtf'" 
cular arc airfoil at M = 1.15.  Results calculated with 
and without the SPO arl presented and show the *g^«* £;. 
fects on the shock jump and stand-off distance.  It ^ inter 
esting to note that the pressure coefficient on the Jirfoil 
U/c>0) is curiously unaffected by the treatment of the shock, 
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3.2.2  Unsteady Flows With a Supersonic Freestreatn 

The extension of the unsteady perturbation method to 
flows with supersonic freestreams proceeds in an analogous 
manner to the steady flow case just discussed.  The main 
generalization involves the development and implementation 
of a farfield boundary condition for the numerical solution 
scheme.  As in the steady case, a characteristic condition 
is developed which is valid far from the airfoil.  To this 
end, consider the governing equation for the unsteady per- 
turbation potential written in the following form: 

xx KI yy IKI 
V X

 
X/ 

(35) 

where  it is noted that  K<0  for  supersonic  freestream  flow. 
Introducing the characteristic  coordinates: 

^  =  x   + /|i]  y 
(36) 

n = x - y/lKTy 

Equation   (35)   can be written  in the following  canonical   form: 

924> 
j^.     {(21^4   )   +   ^^xV   | 

(37) 

Integrating along the  4  and  n characteristics  in turn results 
in  the characteristic  relations: 

H-Kvfev 

+   / (2i^H^x)     dn} 

(38) 

on 
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■nnd 

3n   2  x  ^7   y     4|K| \ x x 

(39) 

/ 
+ / Uifty+OJ d^ xxx 

dy    1 

As before upstream infinity x-»—<» is considered a region of 
uniform flow so that (})=())x = 0 and this is used to set an up- 
stream boundary condition on 4).  On the top and bottom of 
the grid the characteristic condition valid along incoming 
characteristics given by Equations 38 and 39 are used.  Under 
the assumption that these boundaries are far from the airfoil 
and using the fact that the incoming characteristic originates 
in a region of uniform flow, the integrals in the character- 
istic equations may be neglected so that: 

*v ■ *M*1 ^v + 
2/IK] 

(2i "^xVl 
(40) 

as y -► + 00 

These boundary conditions are incorporated into the 
finite difference procedure by using a one sided difference 
form for 4)yy at the top and bottom of the grid with the re- 
quired value of (t)y given by Equation 40.  For example at the 
top boundary: 
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't'vv^ -; - yyi'j  ^i^-Y xifj   271^1^   
i'j Xi,j Xi,j/ 

(41) 

Ayj_1 ri^M-i)} 

As before the x derivatives of (j)0 and (J) are backward differ- 
enced since the boundary points are required to be supersonic 
for this boundary condition to apply.  The use of Equation 41 
and an analogous equation for the bottom boundary effectively 
closes the system of equations for a column of grid points. 

Figures 14 and 15 below are presented to illustrate 
the application of the method to fully supersonic flows and 
low supersonic flow (mixed flow) respectively.  Figure 14 
presents results for change in pressure coefficient per unit 
quasi-steady (k=0) deflection in pitch (f^=-l) for a flat 
plate (uniform mean flow (j)0EO) and for a circular arc air- 
foil both at Mo^l.S.  The flat plate result should compare 
identically with supersonic linear theory which is also shown 
in the figure.  As shown, the present flat plate result com- 
pares very well with linear theory with the exception of some 
smoothing of the centered expansion wave at the leading edge 
and the shock wave at the trailing edge.  The present theory 
also shows a tendency to overexpand the flow at the leading 
edge which is believed due to the extrapolation procedure 
discussed above for the steady flow.  The circular arc results 
(Figure 14) and results for a NACA64A006 airfoil (Figure 15) 
are calculated as quasi-steady (k=0) pitch perturbations to 
the non-uniform steady solutions presented in Section 3.2.1. 
The circular arc results show an appreciable non-uniform flow 
effect even for a fully supersonic flow of Mro=1.5.  As ex- 
pected, this effect is shown to be even greater in Figure 15 
for the NACA airfoil at a low supersonic Mach number (Moo=1.2) 
In this case it is recalled that the steady flow is subsonic 
near the leading edge which is responsible for the leading 
edge singularity in the perturbation pressure coefficient 
shown in Figure 15. 

The results presented here demonstrate the applica- 
tion of the present method to supersonic flow and verify that 
the method reduces to linear supersonic theory for M00>>1. 
The method also seems to give a reasonable description of the 
transonic non-uniform flow effects and this is amplified upon 
in later sections of the report. 
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3.3.  wind Tunnel Wall Effects 

Wind tunnel wall interference effects are extremely 
important for steady transonic flows and because of possible 
resonance effects are potentially even more important for un- 
steaSy flows.  The inclusion of such effects;in any theory 
such as the present one clearly enhances the atility of the 
theory for purposes of comparing with experimental data.  Re 
cent attempts have been made by Munnan26, Kacprzynski27 and 
Collins and Krupp28 to evaluate wind tunnel wall effects for 
s^eadj tränsonicPflows, and an initial attempt at including 
such effects in the present steady and unsteady theories is 
described in this section. 

plenum chamber 

T" 
1 
1 

***. i    L 
<_> |   h,h 

i 
i=l 

W24-4-4^-^9 
yri 

x,i 

porous or solid wall 

I 
I 

i = IM 

I 

I 
I 

1 ^^^^v^^v^^V^ 
FIGURE 16. SCHEMATIC OF WIND TUNNEL CONFIGURATION 

A general two-dimensional wind tunnel test configura- 
tion is sketched in Figure 16 above.  J^is assumed that the 
airfoil is on the tunnel oenterline and that the solid or 
Dorous wind tunnel walls are separated by a distance h. The 
Keatment of such a configuration by the present numerical 
method requires the inrlulion of a proper wall boundary con- 
dition in the finite difference mesh at the scaled location 
of the walls and the development of a farfield ■olution for 
fixing a boundary condition on the upstream and downstream 
boundaries of the grid. 

The treatment of upstream and downstream b°unda^^s
f lowa 

follows from the same general method as ^^Z01.^^ "rized 
and is described in some detail in Appendix A. K

As «"^"^f 
there an asymptotic solution has been derived by the method 
o? images tnl  general lifting airfoil in a steady subsonic 
now tor  the solid wall case. This solution is believed to 
be accurate, and is also used for the case J« ■~JJ_2jLt 
porosities.  This solution is thus used to fix a Dirichlet 
houndarv condition for ^  on the streamwise boundaries of 
Se nnitSSiffe^ence grid (i=l and i=IM).  No corresponding 

-40- 

■aMMMM 



WM 
1 mmm^f^^mm^m^-m l'll'W      I n 

solution for the unsteady potential has been developed; how- 
ever the steady solution (which applies for the unsteady per- 
turbation potential for k=0) indicates that to leading order 
0X is exponentially small as x-~.  Thus a zero gradient con- 
dition JliO is imposed on i=l and IM for all unsteady cases 
This shoSld be accurate for the low frequency unsteady flows 
considered and the adequacy of the approximation has been 
verified for the quasi-steady case.  Supersonic wind tunnel 
flows can also be treated by the method and in this case the 
zero gradient upstream and downstream condition is imposed 
for both steady and unsteady solutions. 

Of more immediate importance to the numerical simulation 
of wall interference effects is the treatment of the wall bound- 
ary condition for general porous or slotted walls  The solid 
wall case can be considered as a trivial special case (Jy - 0 
on v =Th/2).  Analytical modeling of ventilated wind tunnels 
Ts  a subject as rich in problems and ^"ii^^f ^^.f the 
transonic flow problem itself.  Kacprzynski^' has in fact 
pointed Suttha? the characteristics of porous or slotted walls 
cai be highly dependent on flow Mach number and Reynolds number 
in addition to wall construction.  Since the primary purpose 
of  the present work is to demonstrate the ^pability of the 
method to treat wall effects it was decided to ^strict the 
initial effort to the simplest possible ^L  As a result, 
the wall boundary condition is treated as the first order (lin 
ea?) Elation between the perturbation ve]ocity normal to the 
wall and the local pressure coefficient, assuming the £•«« 
pressure is equal to the freestream static pressure.  The follow 
ing equationrhSid for the steady and unsteady perturbations 
respectively: 

♦• = + Hi on y = 1 2 
(42) 

4,y = + Pe
iß* ( ^ik») 

+ h 
on y = _ 2 (43) 

where the scaled tunnel height is; 

h = [(1+6) »Mil    | (44) 

and where P is the wall porosity factor (P ■ 0 for solid wall) 
and |* is introduced to permit a phase lag between the flow 
pressure and normal velocity in the unsteady case  The bound- 
ary conditions are introduced into the finite difference pro- 
cedure using one sided difference forms for <))yy on the upper 
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and lower wall boundaries in the same manner as the body bound- 
ary condition and as described for the supersonic farfield 
condition above, 

it is not immediately obvious how P is to be estimated. 
Kacprzynskl27npoii^ out thlt it could be a non-linear function 
ofpressure (o? *x) and that P could be different for flow into 
or oufof ?he plenum.  In any event, one rational estimate for 

ing factors are the open area ratio, S, or 1-S respectivexy. 
scaled parameters: 

A
2
/
3 

u = 
U 

I (1 +Y)6M^1 T7^ 
,), = 0   (free jet) (45) 

and 

v = 6 U (t>y = 0 (solid wall)   (46) 

where u and v are the streamwise and transverse perturbation 
velocity components.  Taking the weighted average gives: 

S    1      (j) 
^y " (1-s)   [(I+Y)6M^] 

i/3 

(47) 

P 

To demonstrate the method, steady and quasi:steady (k-0) 

^'trSL^^J^rt ^eifl-si^e the f t^ presentea in Sec- 
tions 5.0 ana 6.0 below were measure^,the":. ™f= '^e test 
slottea wall with a 10% open area ratxo se ***£**£*. 
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is not very different than the solid wall solution indicating 
that, for this case at least, the porosity is not sufficient 
to model free air conditions.  Figure 18 presents the jump in 
pressure coefficient per unit flap angle for a quasi-steady 
{k=0) flap deflection calculated as linearized perturbations 
to the steady solutions just described.  The results for the 
solid and porous wall are compared to the corresponding free 
air solution and test results from Reference 19.  The results 
show that effect of the walls is to strengthen the perturbation 
through the shock and to significantly decrease the pressure 
perturbation on the non-deflecting forward portion of the airfoil 
The comparison of the theoretical results show that the wall sig- 
nificantly decreases the upstream influence from the flap to the 
forward portion of the airfoil.  Although the wall solutions 
do not improve the comparison with the data they do indicate 
that appreciable wall effects are acting for this test config- 
uration.  Additional unsteady results with wall effect are pre- 
sented in Section 6.0. 
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FIGURE 18. EFFECT OF WIND TUNNEL WALLS ON AIRFOIL 

PERTURBATION PRESSURES 
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3.4   Three Dimensional Planar Wing Calculations 

FIGURE 19. SCHEMATIC OF THREE-DIMENSIONAL PLANAR WING 

The application of the theory and solution method to 
two-dimensional airfoil sections presented in ^evious work 
and in this report are interesting and xllustrative *»**«: 
practical application to dynamics or flutter problems three- 
dimensional effects must be considered.  As ^th mo^^^ 
effects 3-D effects are more important at transonic speeds than 
in the other speed ranges.  The efficiency of the present scheme 
is such that realistic three-dimensional computations are prac 
tical on modern computers and it is the purpose of^s section 
to describe the required generalizations and tc demonstrate the 
method for a simple planform. 

The wing parameters and coordinate definition are de- 
fined schematically in Figure 19 above.  «» i»^^!^^ 
ment of the method is restricted to rectangular Planf°™s ™ 
dergoing oscillations symmetric with respect to the Yin^ r

r°^ 
(z - 0).  The small disturbance analysis and the unsteady per- 
turbation theory valid for three-dimensional flows were de- 
scribed in Section 2.  As indicated «UgJ, tto «•^•"«•Uw 
to three dimensions requires but the addition of the J^z term 
to the governing equations for the steady and unsteady pertur 
bation potentials.  Asymptotic solutions to the governing 
equations have been derived for lifting wings ^^^*X* 
stream flow by Klunker29, for the steady flow, and by the pre- 
sentauthors for the unsteady perturbation.  These solutions 
a?e sularized in Appendix A and used in the ^meri"i "°lona? 
method to fix farfield boundary conditions.  Three dimensional 
solutions for steady transonic flow have been presented by 

-46- 

IMMMMMMM .-... -I.^^ 



jlu,L-ijMJilwwfHBiiyiu,. wmm IHIWMI ~— 

■5 -I 

Bailey and Steger30 and Newman and Klunker  ; the latter work 
being most closely related to the method for steady flows 
used in this work.  Extensions of the solution method for the 
unsteady perturbation parallel the steady method and are now 
described. 

3.4.1  Numerical Solution Method 

j=JM i=IM 

x,i 

wake 

k=KM 

FIGURE 20. SCHEMATIC OF NUMERICAL SOLUTION DOMAIN 

The three-dimensional numerical scheme constitute 
most straightforward extension of the two-dimensional me 
previously described in detail in Reference 1. As shown 
matically in Figure 20, a cubic rectangular mesh of fini 
tent with uneven grid line spacing is overlayed on the 3 
lution space. The grid is concentrated near the airfoil 
expanded out to the far boundaries of the grid. The fin 
difference equations are identical to the corresponding 
dimensional versions1 with the addition of a centered di 
ence form for <bzz  given by: 

s the 
thod 
sche- 

te ex- 
-D so- 
and 
ite 
two- 
ffer- 
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I (ii 4    ,.^i  - #4 4 fc) zzi, j^k H ^V^k-l1 t Azk ^i'^'^1   l'^k 

(48) 

Az ̂  (<,,i,j,k " ♦i,j,k-: 

»-♦D X 
>0 

i. j»k 
^"^i^j,^0 

FIGURE 21. SCHEMATIC OF DIFFERENCE SCHEME 

The computational star for the three dimensional scheme 
is shown schematically in Figure 21 above.  The tests for the 
elliptic on hyperbolic nature of the equation are made on the 
centered difference form of (X-#*)i J k» and depending on the 
value of this coefficient the x äeri^ives of ^ are centered 
or backward differenced as in the 2-D case. A parabolic point 
operator is used in both the steady and unsteady schemes and a 
shock point operator, as described for the 2-D case in Sec- 
tion 3.2, is used in the finite difference scheme for the steady 
potential. 

As before, the finite difference equations are set up for 
each column (x,z = constants) in turn, taking account of the 
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airfoiI, waKe and farfield -undary conditions^Jn^e^teady 

solution this re3^* in * Jea bv linearizing and iterating, 
column Of ♦•■ which «V^i^ by using the previous iter- 
The linearization is accomplishea oy    ^esulting linear sys 
ate for the coefficient * " *  f«.  optimum Gaussian elUmin- tem is tri-diagonal and is solved by P     nated when the dif- 

ation.  The column ltera^0" ^es is less than an arbitrary 
ference between recessive iterates i   ^  ^ conVergence 
small amount (usually 10 ^.  ^ ^r derations.  In the un- 
is usually -^^f i^^^Üed that the equation is linear so 
steady solf i^^ion is required, that no column iteration ^        i 

Mter each column is ^^Jt^'^i^^JS^ *' UM. relaxation factor whxchdepends.on^^ 0  . 

the equation; n % 1.7 tor ei^1;^  orocess is performed for 
bolic^oints.  The ^1^i^

1^0^?d f?om lef? to right in x 
each column in turn peeping the gri      eld {k = KM in z. 
and from the wing ^^"eitedly in this manner until the The entire grid is swept -peatedj.^ ^ grid sweep 1S less 
<-hanaG in *1) for an ^**« r*» 
than9lome arbitrary small amount. 

<: o^T-fr^il and wake boundary 
The numerical ^f^f^^^y cases is the same as 

conditions in both steady a^n^f ^ airfoil shape func- 
thl  2-D case with the ^eption that the a      airfoil cir- 
tion is now a function of z "^^•^Stl.  In the subsonic 
culation is a unction of z along tne^ solutions for 
freestream case consl5er!^^ms described in Appendix A are 
the steady and unsteady ^f Edition on five sides of 
used to fix a pichlet boundary ^     root , 
the grid.  On the ^.^^«iia whereby ^z H 0 on z - 0. 

feSSdtS :UTJ%^XclllU^ the section pro- 

CeSS. tam\.\ 

The solution process t^ll^^l^le^of i\ 
la the few cases calculated to date.    ££      ^      icmal method 

stance,  seems to bV°°;p"f^U'lipUonSf  the steady and un- 
S^^-5UiS5S c-alSÄs Resented in the next 

tion. r  ^m 

,.4.3 iMrr - fir —^ ™*" ^^^Iar ^^^ f 
To demonstrate the three-dimensional appUcations o 

the method, results are presented in this 
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rectangular planform wing with a constant six percent thick 
circular arc section and with aspect ratio 2b/c=8.  A grid 
of approximately 12000 points was used with IM=30 over 
-3.2 < x < 3.4, JM=19 over -5.4 <; y < 5.4 and KM=19 over 
0 < z~< eTs.  In the x direction 16 grid lines were distri- 
buted along the airfoil with Ax=.06, and in the z direction 
10 grid lines were distributed over the span with bz-.2. 
The grid design was chosen so that the unsteady version of 
the program, which requires three times the grid point stor- 
age of the steady program ((|)0, Re %  and Im 4)) , would fit on 
small core of the CDC 7600 (^64K storage). 

Results for the steady airfoil pressure distribution 
at various spanwise stations are presented in Figure 22 be- 
low for the airfoil described above at a supercritical Mach 
number of M^.86 and zero angle of attack.  The correspond- 
ing two-dimensional results for the same airfoil. Mach number 
and (x,y) grid design, are shown for comparison.  It is noted 
that the pressure distributions for the inboard 50 percent of 
the semi-span are only slightly lower than the two-dimensional 
solution indicating very little spanwise relaxation of the 
flow in this region.  The pressure does not begin to change 
significantly until the final 25 percent of the semi-span near 
the tip.  The 75 percent station, for example, shows some weak- 
ening and forward translation of the shock but the flow does 
not become entirely subcritical until very near the tip sta- 
tion.  All in all, the solution shows a lesser degree of three 
dimensionality than might be expected for this case. 

Results for the linearized unsteady perturbations about 
the steady solution just described are presented in Figure 23 
and 24 for a uniform pitch oscillation at k=0 and k= 1, re- 
spectively.  In each case the corresponding two-dimensional 
solution is also shown.  These results for the jump in pressure 
across the airfoil per unit pitch angle show the expected 
greater degree of three dimensional effects than the steady 
solution.  Of particular note is the fact that the root sta- 
tion in each case is considerably different in magnitude than 
the 2-D solution.  This is especially true of the quasi-steady 
result (Figure 23).  It seems that the main effect of the 
three dimensionality is in depressing the peak suction through 
the shock, although it also has a considerable effect on the 
phase of the pressure distribution as indicated in the rela- 
tively large changes in Im(ACp ) on the aft portion of the air- 
foil in the k=.l case (Figure 24).  It should be noted that 
the results show some residual loading on the airfoil at the 
tip station due to discretization which presumably could be 
reduced by using a finer mesh near the tip.  Finally, Figure 25 
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gives the span-wise loading distributions for each of the 3-D 
cases with comparison to the corresponding two-dimensional re- 
sult.  A comparison of the Re(Ciu) in each case indicates the 
important result that the reduced frequency effect in this 
low frequency regime is considerably less in the 3-D case than 
in the 2-D  case.  Such a result could have important conse- 
quences for a flutter or dynamic stability analysis for which 
the variation of unsteady force coefficients with reduced fre- 
quency can have a significant effect on the results. 

Some comment with respect to computer run times for 
the cases presented here is clearly of interest.  The steady 
computation was taken to a convergence of AcJ) 0max^5.0*10~

5 

which required 157 full grid iterations and was performed in 
a total of 65 seconds on a CDC 7600.  The quasi-steady per- 
turbation required 286 grid iterations and 185 seconds of CDC 
7600 time to reach a convergence of A(|)inax=10~^.  Such a fine 
degree of convergence is not required for acceptable accuracy 
and it is noted that the same case reached A(j)inax=10~

4 in 150 
iterations and 82 seconds of 7600 time.  Convergence and com- 
puter run time for the fully unsteady k=.l case were similar 
to (but less than) the k=0 case. 

Although somewhat greater definition (more grid points) 
is called for than was used in these demonstration calculations, 
the computer time requirements mentioned here indicate that 
the method is efficient enough to permit flutter aerodynamic 
calculations for three-dimensional planar wings.  The three 
dimensional versions of the programs which implement the 
method discussed above for the steady and unsteady perturba- 
tion potentials are described in some detail in a companion 
users manual to this report.  The method as presently program- 
med applies to rectangular planform wings in subsonic free- 
stream flow but the programs could be easily generalized to 
treat supersonic or wind tunnel flows.  The generalization to 
tapered and swept wings is the next major generalization which 
could be effected to significantly enhance the usefulness of 
the method. 

-51- 

i 
■ i »■ ~-1»~ 

M—■—MTIWtiM—li—il i . -   .   .■  _ 



'■■"•WHUII iiWOTl-ui.M mttmmnmtmw mmn "" 

-.6 

—I 1    I    I 

Circular »Vrc Airfoil 
Aspect Ratio = 8.0 

M =.86,6=.06 

FIGURE 22. STEADY AIRFOIL PRESSURE COEFFICIENTS 
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Circular Arc Airfoil 
Aspect Ratio = 8.0 

11^=. 86, 6=.06, ao=0 
Pitch Deflection 

k=0 

+ — 3D results 

+— 2D results 
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FIGURE 23. JUMP IN AIRFOIL PRESSURE COEFFICIENT DUE TO 

QUASI-STEADY DEFLECTION IN PITCH 
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FIGURE 2/l. JUMP IN UNSTEADY AIRFOIL PRESSURE COEFFICIENT 
DUE TO OSCILLATION IN PITCH 
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4.0     NUMERICAL ACCURACY, CONVERGENCE AND STABILITY 
CONSIDERATIONS 

Before proceeding with the large number of calcula- 
tions presented for verification of the method (Section 5) 
and for the flutter aerodynamics (Section 6) the numerical 
accuracy and convergence of the method was investigated in 
hopes of defining a grid and degree of convergence which 
would strike a happy medium between accuracy and efficiency. 
Also, attempts were made to speed convergence through the 
optimization of relaxation parameters and the use of standard 
matrix solution acceleration schemes.  These studies are sum- 
marized in Sections 4.1 and 4.2.  Studies of the stability 
of the numerical scheme have been performed throughout the 
research and especially upon discovering that an instability 
may develop for a combination of freestream Mach numbers near 
sonic and high reduced frequencies.  Some salient results are 
summarized in Section 4.3. 

4.1    Numerical accuracy Considerations 

In any finite difference solution technique, numerical 
accuracy is often as important as the accuracy of the basic 
theory upon which the method is based. The ultimate test of 
numerical accuracy is, of course, comparison with exact solu- 
tions for the same governing equations.  Such comparisons have 
been made for the steady solution method15'16 and these have 
demonstrated the accuracy of the mixed differencing line re- 
laxation scheme for steady flows.  Similar comparisons have 
been made for the present unsteady method in Section 4 for 
the special cases of linearized subsonic and supersonic flow 
and have indicated that the solution method is basically ac- 
curate for these relatively simple flows.  It is unfortunate 
that no exact solutions are available for unsteady flow at 
supercritical Mach numbers.  In this case, however, certain 
numerical tests can be performed which provide a measure of 
numerical accuracy and some results of such tests are pre- 
sented here. 

The accuracy of the numerical schemes for both the 
steady and unsteady perturbation potentials used in this work 
depend on many variables.  Two of the most important are the 
degree of convergence of the iterative relaxation procedure 
and grid design and definition.  Their effect on the accuracy 
of the steady and unsteady solution methods are examined in 
Figure 26 through 29 and Figure 30 and 31 respectively. 
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Figure 26 shows a typical convergence history for a super- 
critical steady flow calculation.  The parameters plotted  ^ 
versus the number of iterations are the maximum change in (j> 
throughout the grid, (A(})max) the change in airfoil circula- 
tion (Ayte) and the chan9e in the non-uniform flow doublet 
distribution (AP) per iteration, where: 

'■11 <*x> d^dn (49) 

These parameters provide a good measure of the degree to which 
the solution has converged.  For example based on these curves 
the asymptotic convergence rate for each parameter can be de- 
fined and used to estimate the error, for example (^N-*»), 
which can be expected if the iteration procedure is terminated 
after N iterations.  This has been done in this case assuming 
the iteration procedure was terminated when A<})max-10-

4 (N=150) 
and the results are to a conservative estimate: 

♦l50 -el)
0! < 1.1*10 

-3 

1*150-YJ - .9*10 -3 

lP150-pJ - 2-0*10 
-4 

Thus based on this result it is estimated that (j) throughout 
the grid has approached its limiting value to within 0.11%; 
likewise the airfoil lift.  This is clearly more than accept- 
able accuracy for the calculation of unsteady aerodynamic 
coefficients for example; the prime purpose of the present 
work. 

Figure 27 presents another measure of accuracy for 
this same case.  Presented there is the distribution over the 
airfoil of the change in pressure coefficient due to change 
in the degree of convergence from A(j)max=10"

4 to A^max-10 • 
All values shown in the figure are less than 1% of the cor- 
responding values of pressure coefficient. This in fact is 
a more vigorous test of accuracy than considering the values 
of et0 since CV^JNA^/Ax.  Thus even though the error in * (A*) 
is less than .1% the error in Cp could be larger due to the 
small grid size on the airfoil.  This figure shows the 
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interesting fact that the approximate error in Cp follows the 
sano general distribution over the airfoil as the pressure 
distribution; with the error being greater, as might be ex- 
pected, near the leading edge and at the shock. 

It should be pointed out that the case considered is 
quite typical of all supercritical cases for which the con- 
vergence has been examined in this manner. The main result 
of such investigations is that a degree of convergence of 
A^max^lO"4 should be more than sufficient to provide 1% ac- 
curacy for airfoil pressures and integrated forces. 

The effect of grid size or definition on solution ac- 
curacy is indicated in Figures 28 and 29.  Figure 28 presents 
results for the pressure distribution for a NACA64A006 airfoil 
at Moo=.875 using two different grid definitions:  a coarse grid 
(25x25) with 12 grid lines on the airfoil and a more refined 
grid (50x50) with 26 grid lines on the airfoil.  Each grid was 
taken to the same degree of convergence (A<|)max=10"

4) and the 
results show a relatively large difference.  The comparison 
with the experimental data (Tijdeman et al19, see Section 5) 
is quite good, however, for the refined grid so that no fur- 
ther grid refinement was used in this case.  The effect of an 
even more refined grid is shown in Figure 29 for a circular 
arc airfoil.  As indicated there, the effect of such a highly 
refined grid is mainly to sharpen up the shock.  The effect 
on the pressure distribution away from the shock is negligible. 
It is believed that the same sharpening of the shock could be 
attained by concentrating grid lines near the expected shock 
position rather than refining the entire grid.  However, in 
the present work a grid which provided acceptable accuracy 
over a wide range of Mach numbers was required for efficiency 
so that such a strategy for sharpening the shock could not 
be used in general.  Based on comparisons, such as these, it 
is believed that a grid with approximately 50 points in each 
of the x and y directions will provide acceptable accuracy. 

The corresponding effect of degree of convergence on 
the unsteady scheme is shown in Figures 30 and 31.  The case 
considered is the NACA64A410 airfoil at M^.72 with a quasi- 
steady pitch deflection.  The convergence histories for k<bmax 
and Ay in Figure 30 are of a somewhat different nature than 
the corresponding steady results as they show a relatively 
constant rate of convergence most likely due to the linearity 
of the governing equations.  Based on the asymptotic conver- 
gence history, conservative estimates for the error in $  and y 
if the iteration process is terminated at A^max^0"4 are: 

1*360 " #«| < 5.*10"4 

\y^cn   -  Y 360 10 -3 
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Aaain the error would seem to be acceptable for a degree of 
convergence of A*raax=10-4.  The 

c°^esP°ndf^h^
g^ per- 

turbation pressures on the airfoil due to a change in conver 
gence fromPAW=10-4 to AW^O"

5 are shown in Figure 31 
?he distributiSn is shown to be somewhat erratic but in each 
case the change is no more than 2% of the local value of Cp 
with the least converged pressures being at the leading 
^dge and in the region of the shock.  The effects of grid 
definition on the unsteady perturbations f ^L maio? ef- 
those shown for the steady solution.  That is, ^e ma^or ef 
feet of a finer grid than 50 x 50 is increased definition of 
perturbation pressures through the shock. 

In summary, studies of numerical accuracy as briefly 
examined here, indicate that a 50 x 50 grid taken to a con- 
veraence level of A(|>max=10-

4 provides approximately 1% ac- 
curacj in both stead^and unsteady results for pressures on 
the airfoil and a corresponding level of numerical accuracy 
for integrated forces. 
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4.2   Convergence of the Numerical Scheme 

Convergence of the steady and unsteady solution schemes 
is influenced by the parameters which define the solution 
(similarity parameters K,fi, airfoil shape function) and by 
the parameters which control the numerical solution procedure 
(grid design, and relaxation parameters).  Based on the large 
number of solutions calculated for this report, using the 
basic 50 x 50 grid, the convergence histories presented above 
are typical for a wide range of supercritical Mach numbers and 
reduced frequencies.  The relaxation parameters can have a 
somewhat greater effect on convergence and this effect is dis- 
cussed here along with a discussion of possible convergence 
acceleration schemes. 

As noted in previous work, a type dependent relaxation 
scheme is used in both the steady and unsteady solutions; that 
is, for locally subsonic points the solution is over-relaxed, 
l^a)e<2 and for locally supersonic points the solution is under- 
relaxed, 0<wjl

<"1-«  The limits on the relaxation parameters are 
due to stability considerations and are common for elliptic 
or hyperbolic finite difference solution schemes.  The values 
of the relaxation parameter within the above limits can affect 
the convergence rate and in general there exist optimum values 
which provide the fastest convergence.  The effect of the el- 
liptic relaxation factor, a)e, on convergence for a typical 
supercritical steady case is shown in Figure 32.  It shows 
that for a value of u)e=1.7, A(t)max=10-

4 convergence is reached 
in 58 iterations as compared to 78 for ü)e=1.5. Almost identi- 
cal results as shown for a)e=1.7 were obtained with ü)e=l'

8 and 

for a value of a)e=1.9 the convergence was somewhat faster but 
was oscillitory in nature.  Such oscillations would indicate 
that ue^1.7 or 1.8 is optimum. The effect of the hyperbolic 
relaxation parameter in this case and for all subsonic cases 
considered was negligible for ^=.7 to .9.  A similar result 
holds for the unsteady solutions examined parametrically in 
this same fashion.  Thus values of MQ^I.!  to 1.8 and ^h=-1 
to  .9 seem to be close to optimum for a wide range of simi- 
larity parameters of interest.  In other words, for any given 
case the convergence rate could probably be increased by 
modest amounts but the experimentation needed to determine 
optimum values would outweigh the increased efficiency achieved, 
The task of mapping out optimum values of iiie  and uh as func- 
tions of the similarity parameters K and SI  would be an under- 
taking which would not be justified due to the surprisingly 
small effect the parameters saem to have for values in the 
range given above.  This is especially true since any bene- 
fits so achieved might possibly be negated by grid geometery 
or airfoil shape effects. 
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For supersonic freestream flows the importance of ü)e 
relative to wh switches.  That is, OJ^ becomes the more im- 
portant relaxation factor.  However, based on the supersonic 
calculations performed in this study the ranges of these 
parameters given above still provide close to optimum results, 
It should be mentioned that for fully supersonic flow the 
present scheme converges in one grid iteration, since in 
this case the scheme provides an implicit solution method for 
the wave equation in which x is the time like variable.  This 
is true, however, only if ü)hEl-  For (1)^1 in the fully fuper- 
sonic case, the scheme may require many tens of iterations 
to converge. 

The poss 
solution mehtod 
tion schemes ha 
As described in 
worked well is 
which the solut 
a certain level 

ibility of increasing the efficiency of the 
by using various matrix solution accelera- 

s been investigated briefly in this study, 
previous work,1'20 one such method which has 

the so-called "grid halving" procedure in 
ion is initiated on a coarse grid, taken to 
of convergence, and successively refined. 

Another method which was tried was the Aitken's 5 
method33.  This method in its most basic form assumes that 
a sequence of numbers i^1 AnA       )   converges exponentially 
with respect to n and is used successfully to accelerate 
convergence of iterative schemes for system of equations. 
For use in the present scheme, on extrapolated value for the 
potential at any field point can be defined based on three 
successive iterates by: 

n+l.n-l 

♦"•W 
n, 

-(4) ) 

4) +^-l-2«.
n 

(50) 

In the present work this has been applied in two ways:  the 
first is to extrapolate all grid points and the second is 
to extrapolate a global quantity such as airfoil circulation. 

The use of extrapolation on all grid points for the 
non-linear steady potential has given quite bad results in 
all cases tried.  The non-linearity of the basic equations 
is a possible culprit but similarly unpleasant results were 
obtained when the method was applied to the linear unsteady 
perturbation potential. The use of extrapolation on the air- 
foil circulation has provided mixed results; that is it has 
worked well in some cases but poorly in others.  However, 
even in the cases in which it worked, the overall convergence 
of the scheme was little if any better than the use of over- 34 
relaxation.  A higher order extrapolation scheme after Shanks 
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which generalizes the Aitken method was also tried with 
similar bad results. 

As a postscript, it should be mentioned that the sing- 
ular lack of success with acceleration methods achie-.td during 
this study should not discourage further investigations along 
these lines because of the possible significant increases in 
computational efficiency which such schemes promise.  In fact, 
Hafez and Cheng25 have recently demonstrated that accelera- 
tion can be made to work even for the non-linear transonic 
potential equation.  Their method, however, was not available 
in time to incorporate into the present work. 
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4.3   Stability Considerations 

Stable, convergent steady and unsteady calculations 
have been performed for a wide range of Mach numbers and 
reduced frequencies as testified to by the numerous results 
presented in this report.  Stability problems have however 
been encountered with the steady and unsteady solution schemes 
for near sonic freestream Mach numbers. 

In the present work instabilities have developed for 
both steady subsonic and supersonic freestream calculations 
near Mach 1,  Such problems have been alluded to by previous 
investigators24 and Kentzer35 has shown the potential for a 
long wave instability in the Murman-Cole scheme.  The insta- 
bility does not seem to be of practical importance, however, 
since many authors have applied the same basic scheme to 
steady flows with Mach numbers quite close to one.  With re- 
spect to the problems encountered in the present work it 
would seem that they are more likely due to inadequate grid 
design.  For example the scheme becomes unstable if super- 
sonice flow regions approach the grid boundaries for subsonic 
freemstream flow cases and if regions of subsonic flow approach 
the grid boundaries for supersonic freestream flow.  Such 
problems can usually be solved by expanding the grid farther 
from the airfoil.  In the calculations reported here the basic 
grid with -6<y<6 could be used for the NACA64A006 up to M^.95 
and the NACA64A410 to M =.9.  In the supersonic flow calcula- 
tions for the NACA64A410 it was necessary to expand the grid 
to -12<y<12 to perform calculations for freestream Mach num- 
ber as low as M^l.l.  A comprehensive study of these problems 
was beyond the scope of the present work. 

The solution method for the unsteady potential was 
found to have a more restrictive stability problem for near 
sonic flows.  Stability problems have b^en encountered for 
a combination of Mach numbers near 1 and/or increasing re- 
duced frequency.  For example for the NACA64A006 airfoil at 
M0O=.95 the method was unstable for k>. 1 and for all reduced 
frequencies at M =1.0ü>. 

In previous work it was noted that the scheme could have 
stability problems near a compression or shock.  A heuristic 
stability analysis indicates that the instability is related to 
the inability of the finite difference grid to resolve short 
wavelength (Xu) upstream facing waves.  That is, the requirement 
th c.C 'u (1 -M)/k>Ax is not satisfied as M (local Mach number) 
approaches 1 and k increases.  If this occurs over a large enough 
region of the grid an instability is likely.  It is noted that 
expansion of the grid as used here most likely compounds the 
problem. 
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A more rigorous Von Neumann stability analysis has 
also been performed for the present finite difference scheme. 
The resulting stability expression is quite complicated de- 
pending on Ax,Ay, k, Q,   we, co^, <t>xi   ^xx as well as the usual 
disturbance wavelength, and it need not be given here.  For 
the simple case of uniform flow (<t'x=(t,xx=0) >   the expression 
indicates that the scheme is stable for all reduced fre- 
quencies with the usual restrictions on the relaxation fac- 
tors.  For general supercritical flows, the stability ex- 
pression indicates the potential for instability for small 
values of K(M00->1) for large values of ß (or k) and for long 
wavelength disturbances.  This is similar to Kentzer's re- 
sult for the steady scheme and it means that disturbances 
(due to round off etc.) with a wavelength long in relation 
to the grid size can amplify and therefore destroy the solu- 
tion.  A similar description of this instability has been 
developed by Ehlers^° using an eigenvalue analysis of the 
column relaxation scheme.  It is noted that this instability 
works at cross purposes with the requirement for a grid of 
ever increasing extent as flow Mach number approaches sonic. 
Increasing the size of the grid would in fact enhance the 
likelihood that this long wavelength instability would develop. 

The problem can not probably be resolved by a simple 
change to the finite difference equations.  One possible sol- 
ution would be to use the results of an inner/outer expansion 
procedure which suggests that near the airfoil the present 
formulation (Equation 10) applies but away from the airfoil 
the high frequency equation (Equation 21) applies if k>0(M-l) 
where M is the local flow Mach number.  Thus near the airfoil 
where the local Mach number may be significantly different 
from sonic the present finite difference procedure could be 
used and matched to an available analytical solution for the 
high frequency equation away from the airfoil where local 
Mach number approaches freestream.  The regimes of flow Mach 
number and reduced frequency for which this procedure is 
valid would be somewhat restricted but it would most surely 
reduce the size of the required finite difference grid for 
M ^1 thereby potentially elliminating the stability problems. 

-71- 

——— 

^M->  MMM M 



nuuiiu i .laMJJiiiili tlUinJl.UiH.IiJI   IJUJUI "•"■^■•■■1 mmmrm 

5.0    COMPARISONS WITH ALTERNATE THEORIES AND EXPERIMENTS 

The accuracy of small disturbance theory for -. „eady 
inviscid transonic flows has been well documented in ;.-cent 
years through comparison with exact solutions, detailed nu- 
merical calculations and experiments in which viscous effects 
are small.  The purpose of this section is to provide some 
initial insight into the potential accuracy of the present 
small perturbation method for unsteady transonic flows.  In 
previous work1»17 it has been shown that the present approach 
matches linearized unsteady subsonic theory for subcritical 
Mach numbers and the results of Section 3.2 above show that 
the method matches linearized supersonic theory for fully 
supersonic flows.  These trends are verified by the aerody- 
namic coefficients presented in this section and the next. 
Although no exact solutions exist for unsteady transonic flows, 
Magnus and Yoshihara9 have recently presented a detailed nu- 
merical calculation and it is compared to the present theory 
in Section 5.1.  The final verification of any theory must of 
course come from comparison to experimental data and such a 
comparison is made in Section 5.2. 

Results are presented for a NACA 64A410 airfoil oscil- 
lating in pitch and a symmetric NACA 64A006 with oscillating 
control surface hinged at the 3/4 chord line.  Before proceed- 
ing with the comparisons, some comments concerning computa- 
tional details are in order. 

In all of the unsteady calculations to follow, the low 
frequency approximation, which involves dropping underlined 
terms in the above formulation, was used. The effect that 
this approximation might have on the results has been discussed 
in Section 3.1 above.  The form of the unsteady perturbation 
to the airfoil downwash for pitch, plunge, and control surface 
oscillations are respectively: 

(pitch) 

(plunge) 

(j)  ■ -l-k(x-x )   0 S x ^ 1 

4 = -ik 0 < x ^ 1 (51) 

(o, 0 i x i x. 
/control\   ♦- " < h 

^surface/   y  (-i-ik(x-xh) xh < x < 1 
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where xh is the hinge point and xD is the pitch point.  In the 
respective cases, the maqnitude of the perturbation is a/6, 3/6 
or «'/* whore a,P and 6' are the amplitudes of the oscillating 
component of angle of attack, flap angle or plunge displacement 
respectively.  The amplitudes of the resulting perturbations to 
the airfoil oressure coefficients in unsealed (Cp) or scaled (Cp) 
form are given by Equations 11 and 12 above.  It is noted that 
the scaling used in Equation 11 for the pressure coefficient, 
commonly known as Spreiter scaling, is a natural result of the 
non-dimensionalization used here.  No attempt has been made to 
modify the Mach number dependence in the scaling to provide 
better aareement with data or exact results as is often done 
elsewhere16.  Finally, it is noted that lift, moment, and hinge 
moment coefficients (Ex. Cia,   Cma, Cna) are calculated by a trap- 
eziodal rule integration of the calculated pressure coefficient 
distributions. 

In the calculations presented in this section and the 
next, the refined grid (achieved by refining a coarse grid by 
the "grid halving" procedure) consisted of 48 points in the 
x direction and 47 points in the y direction.  Over half (26) 
of the grid columns are on the airfoil and grid rows are di- 
vided in a symmetric manner above and below the airfoil.  The 
grid is expanded in a regular manner out to x = ±3 and y = *o 
at which point an analytic farfield expression is imposed as 
a boundary condition.  Previous experience indicated that sucn 
a grid would provide relatively good results so that no attempt 
was made at optimizing the grid structure for each case.  In 
both steady and unsteady calculations the iteration procedure 
was continued until the maximum change in potential, over an 
grid points, from one iteration to the next was less than 
X  10-*  This is consistent with the accuracy tests described 
in Section 4.0 above.  In each case this resulted in a conver- 
gence of the airfoil circulation to better than 10-». 

5.1   NACA 64A410 Oscillating in Pitch at M,, = .72 

Magnus and Yoshihara9 (M-Y) have recently presented 
time-dependent calculations of the flow past a NACA 64A410 
airfoil oscillating in pitch at Mach .72.  Their highly re- 
fined numerical method is based on the full unsteady "Viscid 
flow equations with kinematic boundary conditions fixed at the 
mean airfoil surface.  These "exact" solutions provide a unique 
comparison for verification of the P«sent approximate method. 
The nose bluntness, thickness and camber of the airfoil coupled 
with the mean and oscillating amplitude of ^n^ °^f

a^h the 
(o ■ 2° ± 2°) provide a severe but practical test of botn tne 
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small disturbance approximation and the linearized unsteady 
method. 

Results for the steady pressure distributions for 
a0 = 2° are presented in Figure 33 below; pluses ( + ) and A 
indicate points computed by the present method and M-Y res- 
pectively.  All in all the comparison is moderately good with 
the exception of two anomalies:  the shock description and a 
"knee" in the small disturbance pressure distribution on the 
upper surface near the nose.  Lift predicted by both methods 
compare well as do the lower surface pressure distributions. 
The shock calculated by the present method is farther forward, 
more diffuse and weaker which can be attributed to the rela- 
tively coarse grid and the use of the non-conservative differ- 
encing of the present method.  It is believed that the shock 
description could be improved by the use of shock point dif- 
ferencing^4 described in Section 3.2 or shock fitting2J as well 
as a denser gridwork in the region of the shock.  However, it 
should be pointed out that the shock Mach number is about 1.3 
which would indicate that the small disturbance shock descrip- 
tion is not accurate.  The other anomaly in the comparison 
which has some bearing on the linear perturbation results to 
follow is the sharp change in slope of the predicted pressure 
distribution near the nose.  This behavior is not shown in 
the M-Y results.  It is probably due to the approximation to 
the airfoil slope distribution used in the present method as 
well as possible inaccuracy of the small disturbance descrip- 
tion of the rapid expansion of the flow about the nose of the 
airfoil.  It is clear from this comparison that the present 
results could benefit from increased resolution as well as 
the use of recent developments in the treatment of shocks. 

Calculations of linearized unsteady perturbations about 
the steady flow described above have been performed and ampli- 
tudes of perturbations to the pressure coefficents due to a 
2° pitch oscillation are shown in Figures 34 and 35 for the 
steady, k=0, and low frequency unsteady, k=.2, cases.  The 
results of the present theory are again compared to results 
deduced from the M-Y calculations.  The M-Y results for both 
nose up (20-»-40) and nose down (2o^0o) motion are shown to give 
some indication of the inherent nonlinearity.  Tt is noted that 
the nonlinear behavior is surprisingly small on the super- 
critical upper surface and surprisingly large on the sub- 
critical lower surface.  The present results for the lower 
surface compare well with the M-Y results.  The comparison 
in each case for the upper surface is consistent with the 
difficiencies in the present result for the steady flow being 
perturbed.  The discrepancy at the shock is to be expected 
since the M-Y calculations show significant shock excursions 
(indicated on the graphs) which are not accounted for in the 
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present work. The linearized results show a peak suction 
through the steady shock which is an attempt by the linear 
theory to account for the strengthening (or weakening) of the 
shock due to a nose up (or nose down) pitch perturbation.  The 
present results also show an as yet unexplained decreased 
suction (dip) near the x=.l station which corresponds to the 
"knee" in the steady pressure distribution discussed above. 
This behavior is not shown in the M-Y results and is an indi- 
cation of possible numerical difficulties in the linear per- 
turbation solution.  This is not believed to be the case, 
however, since a comparison of nonlinear steady small distur- 
bance results (not shown) for oo=0

o and ao=20 show a similar 
dip in the distribution of ACp0^2

o.  This would indicate that 
the anomaly is due to the discrepancy in the steady solution 
in this same region as discussed above. 

AC 

k=0 

00-20 

t  2o^4o 

0*2' 

Magnus and 
Yoshihara8 

.3841 

.3543 

AC m 2* 

k=.2 

Re |ÄCt| 

im lACjJ 
Re lACml 
IM |ACm| 

.129 

.13 

Present 
Results 

.338 

.2385 

-.1003 

.08933 

-.03418 

.115 

.243 

-.096 

.0866 

-.0304 

TABLE 1. COMPARISON OF LIFT AND MOMENT PERTRUBATIONS 

The results of interest for flutter applications are 
the perturbations to the integrated airfoil forces.  The table 
presented above compares the increment in lift and moment coef- 
ficient in steady flow as the angle of attack increases from 
0° to 2° and from 2° to 4°.  Also compared are the linear parts 
of the oscillating coefficients for the k=.2 pitching oscillation 
with 2° amplitude.  The good agreement in each case would seem 
to indicate that the linearized perturbation method provides 
a useful approximation to the oscillatory forces for quasi-steady 
and low frequency oscillations.  It may be noted that for this 
example the ratio of oscillatory amplitude (at 2°) to the thick- 
ness is e=.35 which is a relatively large perturbation. 
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The M-Y results for k=.2 shown in the table are the 
magnitudes of the first harmonic (eia)t) coefficients which 
resulted from their Fourier analysis of the nonlinear time 
dependent results.  Their analysis also shows that the higher 
harmonics are quite small in comparison.  This is to be ex- 
pected from the perturbation expansion which shows that terms 
involving higher harmonics are of order c2.  This result lends 
some credence to the linearized approach used here.  It is 
hoped that future improvements in both the small disturbance 
steady and linearized unsteady perturbation methods will im- 
prove certain details of the present results. 
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5.2 NACA 64A006 with Control Surface Oscillation 

As mentioned in the introduction, the primary applica- 
tion of the method described here is the calculation of gener- 
alized unsteady forces for use in flutter studies.  Such a 
SidyhS been undertaken for the NACA 64A006 airfoil with 
three rigid body degrees of freedom:  pitch, plunge and control 
surface oscillation, and the detailed results are presented 
in Section 6.0.  In'this section, some of ^e results generated 
for control surface oscillations are P^se"ted ,Wc^ione?sl8!l9 
to the experimental data of Tijdeman, Bergh and Shippers  '  , 
for the same airfoil and control surface configuration.  It 
is noted that the experimental technique used to jeasure un- 
steady pressures was sensitive only to the first harmonic 
so that theory and experiment are being compared on the same 
bases. 

Sample results for airfoil pressure coefficients (in 
scaled form) for the non-linear steady (Figure 36) and for 
linearized perturbations due to control surface flection 
fir k=0 (Figure 37) and k=.12 (Figure 38) are presented below. 
The steady results for a supercritical Mach number of .875 
and zero degree angle of attack show good agreement with ex- 
periment with the exception of the region ne"^ficf

h°f' lled 
The present small disturbance results show what must be called 
I rapid impression at about midchord whereas the data shows 
a Jiffuse but moderately strong shock.  Refinement of the 
grid between x/c=.5 and .6 would most ^rely enhance the com- 
parison but it is likely that the use of shock 90i^ f^tmtm 
ing woUld over correct for the rearward position of the shock. 

The linearized perturbation results for a steady con- 
trol surface deflection and for an unsteady control surface 
oscillation at k=.12 (Figures 37 and 38) ^-^^^^er- 
aareement with data.  As shown in Figure 37, the theory over 
pgred!cets thepressure perturbation -/he stationary forward 
portion of the airfoil in comparison to the data. Ttl^s Is 

characteristic of all cases calculated and is believed to be 
due in part io the reduced upstream -fluen- ^^^e^. 
wall effects in the experiment.  It iJifTSS  cSSSutioS^ 
ent calculations are for free a^ .condltlons:^i^tlon 
with a solid wall boundary condition. Presented ^Section 
6 14. show a significant reduction in upstream influence. 
0^;* details of the pressure distribution such as peak suc- 
tion at the shock (slightly forward of the experimental peak) 
and hinqe point singularity seem to be well Predicted by the 
theory? The unsteady k=.12 results in Figure 28 show a similar 
qualitative comparison with some significant quantitative dif- 
ferences in magnitude and phase on the forward portion of the 
airfoil. 
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Comparisons of the theoretical results for C^g with 
experimental data and with linear subosnic/supersonie theory 
are made in Figures 39 and 40 for k=0 and 0.1 respectively. 
As shown, the present theory reduces to linear theory away 
from Mach 1.  In each case the present results are signifi- 
cantly greater than the data although a qualitative agreement 
is apparent.  The peak in the theoretical results at M=.85 
seems to result from a lift augmentation effect due to coal- 
escence at the shock of upstream traveling control surface 
perturbations.  This effect does not occur in linear, uniform 
flow theory for obvious reasons and is not in evidence in the 
data perhaps because of the reduced upstream influence men- 
tioned above.  One final comment with respect to these compar- 
isons is in order.  It is noted that the data is in considerable 
disagreement with subsonic linear theory (and the present 
theory) for a fully subcritical Mach number of .7.  Nonuniform 
flow or wind tunnel wall effects could not be the culprits 
because they both have an effect which would tend to enhance 
the discrepancy.  It seems highly probable that the reasons for 
the discrepancy is the existence of a strong viscous effect 
in the data.  The estimated chord Reynold's number of less than 
200,000 for the experiments adds further weight to this con- 
clusion.  Such effects could only be magnified in the transonic 
speed range. 

Further comparisons with the data are presented in the 
next section along with some results for mean angle of attack 
and wall effects. 
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6.0 CALCULATED RESULTS 

Using the method described in this report, a wide 
range of steady and unsteady results have been calculated 
to provide the necessary aerodynamic coefficient data for 
the flutter studies to be presented in Section 7.  These re- 
sults, described in this section, are for two practical air- 
foil: a NACA64A006 oscillating in pitch, plunge and control 
surface rotation and a NACA64A410 oscillating in pitch and 
plunge.  The ranges of Mach number (Moo^.75 to 1.2) and re- 
duced frequency (k=0 to 0.2) considered serve to demonstrate 
the efficiency and utility of the method for treating un- 
steady transonic flows. 

The same basic grid as just described in Section 5 
(IM=JM=50,-3<x<3,-6<y<6) was used in all cases with but 
slight variations for some special cases.  Also, as is the 
usual practice with the method, convergence in each case was 
taken to ^JA^^IO-4, which resulted in the convergence of 
airfoil circulation to better that lO-4.  it is reiterated 
that this grid design and degree of convergence represents 
a reasonable compromise between numerical accuracy and com- 
puter run time. 

6-1   Results for a NACA 64A006 Airfoil 

Results are presented in this section for a NACA64A006 
airfoil with a 25% trailing edge flap.  Detailed steady and 
unsteady pressure distributions are presented in Section 6.1.1 
and the calculated unsteady aerodynamic coefficients for pitch, 
plunge and control surface oscillations are summarized in Sec- 
tion 6.1.2.  Mean angle of attack and wall interference effects 
on the aerodynamic coefficients are briefly examined in Section 
6.1.3 and 6.1.4 respectively.  It is noted that the unsteady 
results for pitch and control surface oscillations were calcu- 
lated using the low frequency approximation since the high fre- 
quency generalizations to the method, required and used for 
the plunge results, were not inplemented at the time these cal- 
culations were performed.  The effect of the approximation on 
the results has been discussed in Section 3.1. 

6.1.1 Free Air Results of Steady and Unsteady Pressures 

Steady pressure distributions for the NACA64A006 at 
zero angle of attack for subsonic freestream Mach numbers, 
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M^.8, .85, .9, .95, and for supersonic freest ream Mach num- 
bers, M^l.l, 1.15, 1.2, are presented in Figure 41 and 42 
respectively.  The various curves show the progression of 
airfoil pressures from subcritical through the supercritical 
regime to low supersonic and points out the large non-linear 
effect in the transonic regime.  The airfoil first becomes 
supercritical at a Mach number between .8 and .85 and by M,»- 
.85 a weak shock has formed which strengthens and moves aft 
on the airfoil as M«, increases. At Moo=.9 the shock is about 
at the aileron hinge point (x/c=.75) and at M^.95 the pre- 
sent inviscid calculations indicate the shock is at the air- 
foil trailing edge.  It should be noted that the experimental 
data of Tijdeman et al18'19 indicate that at Moo=.9 the shock 
is between 5 and 10 percent chord forward of the aileron 
hinge point and that the shock does not reach the trailing 
edge until very close to M^l, This tendency of the inviscid 
small disturbance result to overpredict the shock strength 
and its aft location is typical and is most likely due to 
viscous effects neglected in the theory.  It is recalled that 
the comparison of the present results with the data (Figure 
36 of Section 5.3) is very good for a fully supercritical 
Mach number of M00=.875. 

It is noted that the Mro=.95 pressure distribution is 
very similar in shape to the low supersonic results shown in 
Figure 42.  In fact, the distributions of CD-Ci for, Mao= .95, 
1.1, 1.15, 1.2, compare to within 10% in eafch Case.  This re- 
sult is the so called "Mach freeze" phenomena for flows near 
Mach 1 and in fact indicates that, although the magnitudes of 
the pressures differ considerably, the local flow Mach number 
over and in the near field of the airfoil most likely varies 
by no more than 10% in the freestream Mach number range M«,- 
.95 to 1.2.  Since the nature of unsteady perturbations to 
the mean flow are determined largely by the flow Mach number 
field about the airfoil the "Mach freeze" phenomena has im- 
portant consequences with respect to the unsteady perturba- 
tion results.  It is expected, for example, that the unsteady 
results for M» between .95 and 1.2 will not vary a great deal. 
This expectation is substantiated somewhat by the unsteady 
aerodynamic coefficients presented in the next section. 

Results for unsteady pressures due to control surface 
perturbations of the subsonic mean flow solutions are pre- 
sented in Figures 43 through 49. The results in each case 
are compared to the data of Tijdeman et »I**»*'  Results for 
the jump in pressure coefficient across the airfoil per unit 
flap angle due to a quasi-steady {k=0) control surface de- 
flection are given in Figures 43,44,45, and 46 for freestream 
Mach numbers of M^.8, .85, .9, .95 respectively.  The results 
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demonstrate the strong non-uniform flow effect for transonxc 
Mach numbers.  In each case the comparison with the data is 
qualitatively good but quantitatively in error  As discussed 
above in Section 5.2, the most probable reason for the dis- 
crepancy is viscous effects.  Of some note are the super- 
critical results for H.-.tS and above.  The results for M«- 
85 (Figure 44) for example shows that the theory predicts 

the location of the peak pressure perturbation through the 
weak shock but overpredicts its magnitude.  This overpredic- 
tion of the perturbation over the non-deflecting forward 
portion of the airfoil is shown in this case as well as the 
higher Mach number cases Mco=.9 (Figure 45) and M^.95 (Fig- 
ure 46).  This indicates that in addition to viscous effects 
wall interference effects could be reducing the upstream in- 
fluence in the experiment as compared to the present free 
air results.  The wind tunnel wall results of Section 6.1.4 
add some weight to this possibility. 

One final comment with respect to the quasi-steady 
results concerns the significant effect that the mean flow 
results can have on the unsteady perturbations.  A large 
part of the discrepancy between the theory and experiment 
in the Mc^.9 and .95 cases can be attributed to the fact 
that the present steady theory predicts a shock location 
aft of the experimental data.  For example at Moo--9 tne 
theory predicts the shock at the hinge point which results 
in a peak in the perturbation pressure at the hinge point 
whereas the data shows the shock location to be at about 
x/c=.7 hence the exoerimental peak in perturbation pressure 
at that location.  Also at Mco=.95 the present resu ts for 
perturbation pressure (Figure 46) compare vefy ^i1^. the 

experimental results at Mc»=1.0.  It is recalled that the 
theoretical steady solution at M =.95 compared more closely 
(as far as shock location) to the experimental result at 
Nw-1.0 than the M^.96 data (shown in the figure) for example. 

Results for the perturbation pressure for fully un- 
steady, k=.l, aileron oscillations are presented in Figures 
47,48, and 49 for M =.8, .85, and .9 respectively.  The com- 
parison to the data, shown in the figures, is similar to the 
comparison for the k=0 results just discussed in detail.  As 
discussed there the results are qualitatively good but quan 
titatively in error. 

The results presented in this section indicate that 
the most likely cause for the discrepancy between the present 
unsteady perturbation theory and the data is the effect of 
viscosity! Viscosity can have a direct effect on the unsteady 
perturbations but for small perturbations has a more l^ely 
indirect effect by way of its modification to the mean f^ow. 
In other words, it is believed that the present unsteady 
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results would be in somewhat better agreement with the data 
if the steady results for example for shock strength and lo- 
cation agreed with the data.  This brings up the interesting 
possibility of improving the overall theory by performing 
viscous modifications to the steady solution by coupling the 
present inviscid theory to a boundary layer analysis.  Al- 
though this would be a significant undertaking it would be 
considerably easier than performing an unsteady boundary layer 
analysis coupled to the fully unsteady theory. 
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6.1.2  Summary of Unsteady Aerodynamic Cpefficients 

To perform the transonic flutter analysis of Section 7.0, 
unsteady aerodynamic coefficients for pitch, plunge and control 
surface oscillations have had to be generated for the Mach 
number range Moo = .8 to 1.2 and low reduced frequency range 
(k = 0.0 to 0.2).  The results were calculated as unsteady per- 
turbations to the zero angle of attack steady solutions pre- 
sented above.  The resulting unsteady aerodynamic coefficients 
for each degree of freedom are presented in this section in 
graphical form as functions of freestream Mach number for each 
reduced frequency considered.  The definitions used for the 
coefficients are believed consistent with the American litera- 
ture and are defined in detail in Appendix B, which also con- 
tains tables of the numerical results. 

The entire matrix of cases for this airfoil involved 
approximately 110 separate and distinct steady and unsteady 
calculations.  This matrix of calculations required, by 
conservative estimate, approximately 1.25 hours of CDC 7600 
time.  This is a better measure of the efficiency and utility 
of the method than quoting the often widely varying run time 
for an individual case.  It also indicates that transonic 
flutter analyses for two-dimensional airfoils are possible with 
relatively modest expenditures of computer time. 

Figures 50 through 59 present a summary of the results 
for real and imaginary parts of the lift, moment and hinge 
moment coefficients per unit flap angle, pitch angle, or plunge 
deflection for the three rigid body degrees of freedom.  The 
figures are presented for completeness and the thj readers 
perusal in total as they point out the important transonic 
effects on all coefficients.  Figure 50, for example, presents 
the lift coefficient due to control surface oscillation and 
demonstrates the expected strong nonlinear effects in the trans- 
onic regime as well as the large phase shifts in unsteady forces 
Portions of the curves between M«, = .95 and 1.1 are extrapolated 
due to the inability to perform stable unsteady calculations in 
this region.  For example at M«, = .95 the numerical method was 
unstable for k >. .1 and for all reduced frequencies at Moo = 1.05 
The required extrapolations are made with some degree of con- 
fidence however because of the "Mach freeze" effect in this 
region.  As discussed just above, the steady calculations for 
Moo = .95 and 1.05 show only slight differences in the flow Mach 
number in the solution field on or near the airfoil so that 
unsteady perturbations are expected to vary only slightly from 
the M» = .95 or 1.1 results.  This should be expecially true 
for the control surface perturbations as in fact is verified 
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by Figures 50, 51 and 52.  Figures 53 through 59 show that the 
variation in the coefficients between M^ = .95 and 1.01 for the 
pitch anS plunge modes is, as might be expected, somewhat greater 
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6.1.3 Mean Angle of Attack Effects on Unsteady Aerodynamic 
Coefficients 

The basic theory and all of the unsteady results pre- 
sented in this report indicate and demonstrate that non-uniform 
mean flow effects dominate the development of the unsteady 
flow at transonic speeds even in the limit of small unsteady 
perturbations.  This is in contradistinction to the usual 
experience for subsonic and supersonic flows for which the 
first order unsteady flow uncouples and is therefore inde- 
pendent of the mean flow.  One manifestation of the non-uniform 
flow effects is the effect of mean airfoil angle of attack 
(or mean flap angle) which since it may significantly affect 
the mean flow can therefore influence the resulting unsteady 
perturbation.  This effect is briefly demonstrated here for 
the NACA 64A006 at a supercritical Mach number of M^ - .as. 

s thr calculated pressure distri- 
= .35 for mean angles of attack 
shows that the upper and lower 
which are identical for ot0 = 0 
icantly altered for angles of 
, as angle of attack increases, 
ritical and the upper surface 
tical.  Also the relatively 
tronger and moves aft on the 
if the freestream Mach number 

r that this relatively large 
ignificantly affect the unsteady 

Figure 60 below present 
bution for this airfoil at M^ 
a0 = 0, 1° and 2°. The figure 
surface pressure distributions 
(symmetric airfoil) are signif 
attack of 1° and 2°. As shown 
the lower surface becomes subc 
becomes more and more supercri 
weak shock at ot0 = 0 becomes s 
upper surface much as it would 
were increased. It seems clea 
change in the mean flow will s 
flow perturbation. 

This is indeed shown to be the case in Figure 61, 62, 
and 6 3 which present the variation with reduced frequency of 
the lift, moment and hinge moment coefficients, respectively, 
due to the oscillating aileron.  Results are presented there 
for 0, 1° and 2° mean angle of attack and limited experimental 
data at zero angle of attack are presented for comparison.  The 
strong reduced frequency effect shown for C^ and f 0 jna 
weak dependence for Cnß are consistent with gubsonid linear 
theory.  The primary result of note is the prediction of a 
substantial mean angle of attack effect.  Of some considerable 
interest to the flutter problem is the change in sign of the 
imaginary (out of phase) part of the hinge moment due to 
mean angle of attack.  This indicates a Pot^tial for one 
degree of freedom flutter (control surface buzz  due solely to 
mean airfoil angle of attack; an important result not predicted 
by linear theory. 
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6.1.4 Wall Interference Effects on Unsteady Aerodynamic 
Coefficients 

The extentions of the steady and unsteady flow solu- 
tion method to include wall effects were described above in 
Section 3.3.  In this section the capability is used to brief- 
ly examine the potential effect of the wind tunnel configura- 
tion used in the Tijderaan et al. experiments on their results. 

The approximate modeling of the wall boundary condition 
was discussed in the earlier section and steady and quasi- 
steady perturbation results for the NACA 64A006 were presented 
there.  These results indicated that although the effect of the 
walls was appreciable there was little difference between solid 
and the slotted wall results.  Also as shown there the inclu- 
sion of wall effects seemed in fact to increase the discrepancy 
with experiment with respect to the important peak pressure 
perturbation through the shock (re:  Figure 18).  This is shown 
in Figure 64 below which essentially repeats Figure 18 with the 
addition of experimental data for the same airfoil and a quasi- 
steady aileron deflection at M« = .875.  As shown in Figure 64 
the addition of the slotted walls reduces the agreement with 
the data with respect to location and magnitude of the peak 
pressure through the shock but enhances the agreement with res- 
pect to the depressed pressure perturbation forward of the peak. 
The reasons for the difference between the free air and the wall 
solution can be explained almost entirely by the effect of the 
walls on the corresponding steady solution.  That is, the effect 
of the wall is to strengthen the shock and move it aft on the 
airfoil hence the enhanced perturbation pressure through the 
shock and the aft location with respect to the free air result. 
The depressed perturbation forward of the peak is due to the 
stronger shock and larger supersonic region in the steady wall 
solution, both of which have the effect of decreasing the sig- 
nal which reaches the forward part of the airfoil from the con- 
trol surface. 

The data at M = .875 is added to present a possible ex- 
planation for the discrepancy between the present results and 
the data. Although it may be fortuitous, the comparison of the 
present porous wall results at Mo, = .85 and the data at M^.875 is 
very good with the exception of an overprediction of the magni- 
tude of the perturbation through and just aft of the shock.  As 
discussed earlier, the inviscid small disturbance steady results 
are almost without exception more supercritical than the corres- 
ponding experimental results.  This is usually attributed to the 
effect of viscosity, neglected in the theory, which has the 
effect of weakening and moving the inviscid shock forward on the 
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airfoil.  If this one comparison is to be believed, a possible 
alternative to the viscous coupling suggested above would be 
to include wall effects in the inviscid theory and to account 
for viscosity as an effective "shift" in the Mach number for 
comparison to experimental data. This could clearly only be 
done apriori and of course would reduce the practical utility 
of the method. 

Figures 65, 66, and 67 are presented to show the effect 
of solid or ventilated walls on the lift coefficient due to 
control surface, pitch and plunge oscillations respectively. 
As shown, the effect is quite appreciable in the low reduced 
frequency regime.  Of some particular note is the fact that 
the trend with respect to reduced frequency is different for 
the wall cases as compared to the free air case.  This could 
be due to the fact that the wall cases are effectively for a 
higher Mach number due to the influence of the walls on the 
steady flow. 
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FIGURE 67. WIND TUNNEL WALL AND REDUCED FRE- 
QUENCY EFFECT ON LIFT COEFFICIENT 

DUE TO PLUNGE 
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6.2 Results for a NACA64A410 Mrfoil 

Steady and unsteady results are presented in this sec- 
tion for a NACA64A410 airfoil for supercritical Mach numbers. 
Calculations have been performed for pitch and plunge oscill- 
ations at reduced frequencies of k=0 to 0.2 for free air Mach 
numbers of M^.75, .8 and .9 at zero mean angle of attack and 
additionally at 1° and 2° angles of attack at M0o=.8.  The sol- 
utions for this airfoil follow the same general trends as 
those already discussed in detail for the NACA64A006 so that 
the results are presented for completeness with minimal addi- 
tional comment. 

The NACA64A410 airfoil has a 10% thickness and adds 
the additional variable of a 4% camber, both of which signif- 
icantly increase the non-uniform flow effects in comparison 
to the 64A006 which is of the same family of airfoils.  The 
steady results are shown in Figures 68 and 69 below and dem- 
onstrate the large supercritical region even at a relatively 
low Mach number of M^.75.  Due to the airfoils non-syraetri- 
cal shape, there is a relatively large difference between the 
upper and lower surfaces at zero angle of attack as shown in 
Figure 68.  The results for progressively higher Mach numbers 
show the strengthening and aft movement of the shock and it 
is noted that the shock is already at the airfoil trailing 
edge at Moo=.85.  The results for different angles of attack, 
given in Figure 69, indicate that at least for small angles 
of attack the variation of the steady solution is also small 
due presumably to the fact that the airfoil is already at a 
relatively large "effective" angle of attack because of its 
camber.  Based on these comparisons it is expected that the 
unsteady perturbations to these mean flows would show a 
large Mach number variation but perhaps a small effect of 
angle of attack.  A table of the calculated steady lift co- 
efficients is presented below for all the cases calculated. 
The values demonstrate the large transonic flow effect on 
lift.  In particular the zero angle of attack lift is shown to 
peak at about M =.85 and to decrease significantly at M^-^. 

FREESTREAM  MACH  NUMBER 
  

.78 
ao = 0 

.80 .85 

a0=0 

.9 

ao=0 ao=0 i 0 

ao= 1 oto=20 

C9 
.625 .715 .918 1.047 .773 .305 

TABLE 2.   LIFT COEFFICIENTS FOR NACA 6W10 
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The results for unsteady lift and moment coefficients 
due to pitch and plunge perturbations to the above steady 
solutions are presented in Figures 70 through 73.  The re- 
duced frequency variation of the various coefficients as 
shown in the figures, is typical of those shown previously 
and again demonstrates the large reduced frequency effect 
in the low frequency regime.  Also of considerable note is 
the large non-linear effect of mean flow Mach number.  Another 
result not shown is that the efffect of mean angle of attack 
at M =.8 is quite small.  In fact the aerodynamic coefficients 
vary^by only a few precent for angles of attack between 0 
and 2°. 
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FIGURE 70.   MACH NUMBER AND REDUCED FREOUENCY 
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FIGURE 71,   MACH NUMBER AND REDUCED FREQUENCY 

EFFECT ON MOMENT COEFFICIENT 

(ABOUT X=0) DUE TO PITCH 
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7.0 TRANSOUIC AIRFOIL FLUTTER ANALYSIS 

The primary purpose of the research reported here was 
to develop a method for calculating unsteady aerodynamic coef- 
ficients for use in transonic flutter analyses.  These analy- 
ses were carried out for two representative airfoils to illus- 
trate the practical effects of transonic unsteady aerodynamics 
on flutter computations.  The flutter analysis method and re- 
sults are summarized in this section 

mean 
ion 

mid chord 

elastic 

center 

-rU 

hinge point 

FIGURE 74. NOTATION FOR FLUTTER ANALYSIS 
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The flutter analysis follows the method of Fung  and 
is the so-called V-g method which is commonly used in current 
practice.  A two-dimensional airfoil with semi-chord, b, and 
of unit length in the spanwise direction is considered free 
to oscillate in three degrees of freedom (plunge, pitch, and 
control surface oscillation) as shown schematically in Fig- 
ure 74 where: 

h = plunge deflection of the elastic axis, positive 
downward 

a = pitch about the elastic axis, positive nose up 

B = angular deflection of aileron about the aileron 
hinge point relative to the wing chord, positive 
tail down. 

The notation used in the analysis, some of which is defined 
in the figure, is consistent with that used by Fung.  It is 
noted that all dimensions are non-dimensionalized with respect 
to the semi-chord and distances are measured with the mid-chord 
point as the origin. 

It is assumed that each degree of freedom is restrained 
by a linear elastic restraint with zero structural damping. 
The three equations of motion are determined by summing the 
inertia, elastic and aerodynamic forces; and assuming harmonic 
oscillations these equations at the flutter point can be writ- 
ten in the following matrix form: 

L  k2[M] - [h]\  joj =  MK] (52) 

where the flutter eigenvalue is: 

X = M (1+ig)^ b2/U2 (53) 

with flow velocity and density, U and p respectively, refer- 
ence frequency, u)r, wing mass per unit span, m and mass ra- 
tio V=m/iT P b2.  Also, the artificial structural damping 
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required to maintain simple harmonic motion is denoted by g 
in the flutter eigenvalue.  The reduced frequency of oscilla- 
tion is defined in the section using the usual American defi- 
nition, namely: 

K " IT (54) 

where it is noted that the semi-chord, b, is used in the ex- 
pression rather than the chord, c, used in other sections of 
this report.  It is hoped that this change of definitions for 
k does not cause undue confusion.  The mass matrix [M] and 
stiffness matrix [K] are written in terms of the airfoil in- 
ertial and stiffness parameters as follows: 

[M] = (55) 

and 

'«■.« <{^ ft)'■ ■*(?)> (57) 

where many parameters have been defined in Figure 74 and where 
x0 is the distance from the aileron hinge point to its center 
of mass and ra and rg are the radii of gyration for the mass 
moment of inertia of the airfoil about the elastic axis and 
for the aileron about its hinge.  The frequencies, u^, a)a, ug 
are the uncoupled natural frequencies for the airfoil in plunge, 
pitch and control surface oscillation respectively.  Finally, 
the aerodynamic coefficient matrix is given by: 
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[A] -f 

0  0 

-(l+ah)   1  0 

0  1 

ic  ^c   ^c Al        2      1 2      1 4   6'     et       8 

am.,  mr 

-  L2Cn6.   
Cna 

in. 

n 
ßj 

(57) 

which transforms the unsteady aerodynamic coefficients as de- 
fined in this report (see Appendix B) to account for the non- 
dimensionalization with respect to b used in this section 
{rather than c used elsewhere in the report).  The transfor- 
mation also accounts for the shift in the definition of air- 
foil moments from the leading edge (as used in the definition 
of C 
sis. 

ma' etc.) to the elastic axis, ah, required in this analy- 

Performing a standard eigenvalue analysis of the above 
system (Eq. 52), provides the formalism for determining the 
so-called flutter point.  For a given airfoil, the flutter 
point at fixed Mach number and air density is determined by 
finding the lowest value of flow velocity for which the arti- 
ficial damping parameter, g (imaginary part of X) is zero. 
This is found by solving for the eigenvalues of Eq. 52 for 
various reduced frequencies and cutting and trying until the 
flutter velocity is determined within acceptable accuracy. 

The results of this analysis are presented here in the 
form of a dimensionless flutter speed, u*, and flutter fre- 
quency, u*, where 

u* = U 
w. a 

u * ■ (58) 

Representative values for the airfoil geometry, inertia and 
stiffness parameters were used as follows: 
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M  = 20,  ra = 0.6,  rß = 0.1 

Cß = 0•5'  Xa = -•ü25' xß ■ -03 

ah = -.46048 

^h " •2'   wci = 1.0,  0,^ = so 

Variations from these values were used to illustrate special 
trends as will be discussed. 

The primary results of the analysis are for the two 
degree of freedom (2 d.o.f.) case for the NACA 64A006 and 
these results are presented in Figure 75 through 77.  In the 
2 d.o.f. case the aileron is assumed fixed with respect to 
the airfoil so that the motion is restricted to pitch and 
plunge oscillations.  Figures 75 and 76 present results for 
flutter velocity and frequency respectively, as functions of 
freestream Mach number. The figures demonstrate the crucial 
importance of the transonic Mach number range by way of the 
dip in flutter velocity at M» = .85 and the corresponding 
large variation in flutter frequency in this range. The re- 
sults for flutter velocity are presented for two values of the 
center of mass location, x , which indicate the importance of 
this parameter on flutter speed.  It is noted that the airfoil 
is statically stable (divergence free) for Mach numbers great- 
er than Me» = .85 due to the shift in the aerodynamic center 
aft of the elastic axis for M« > .85.  Also note that the 
normal flatter mode for all cases given in the figures was 
dominated by motion in plunge for Uh/m-  = .2.  It would be 
expected that the coupling between the pitch and plunge mode 
would increase as u)h approaches ua  and that therefore the cri- 
tical flutter velocity would be decreased.  This effect is 
shown in Figure 77 for Cü./U) up to 0.5. 

u* M« 

free air 
10.25 .473 

•„•a0 11.0 .175 

porous wall 8.12 .075 

TABLE 3. ANGLE OF ATTACK AND WALL EFFECT ON FLUTTER 

PARAMETER (NACA64A006, M^.85) 
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The effect of mean angle of attack and wind tunnel 
wall interference on the critical flutter parameters was 
also examined for the limited cases for which the aerodynam- 
ic coefficients have been calculated.  The results are sum- 
marized in Table 3 for the NACA64A006 at M00=.85 and in- 
dicate a modest beneficial effect of mean angle of attack on 
flutter velocity and a somewhat greater'detrimental effect 
of wall interference.  Both, however, have a conside:ably 
greater effect on the flutter frequency which is decreased 
from w* = .473 for the free air case to u* = .075 for the 
wall case. 

Fully three degree of freedom flutter calculations 
have also been performed for the NACA 64A006 with not alto- 
gether complete results.  Due to the rather restricted re- 
duced frequency range (0 < k < .1) of the present aerodynam- 
ic data, it was impossible to determine the true flutter 
velocity because an aileron dominated normal mode (aileron 
buzz) was fluttering at a frequency which was out of the 
range of the data.  It was determined, however, that the 
aileron significantly damped the plunge dominated normal 
mode which fluttered in the 2 d.o.f. case. This happened 
even for unrealistically high values of a>ß/ü)a "V 50 and for 
values of (i)ß/ü)a ^ 30 the plunge dominated mode was complete- 
ly damped and therefore did not flutter. This curious coup- 
ling of the aileron and plunge modes and the high frequency 
aileron buzz phenomena would seem to be peculiar to the pre- 
sent unsteady aerodynamic data and merits further investiga- 
tion.  Time constraints on the present study did not permit 
a comprehensive study of the 3 d.o.f. flutter case. 

Finally, it is noted that 2 d.o.f. flutter calculations 
have been performed for the NACA 64A410. However, the re- 
stricted Mach number range of the aerodynamic data did not per- 
mit an in-depth examination of the transonic flow effects. 
For example, at M» = .75 the airfoil flutter velocity was 25.1 
and flutter frequency of .19. Mean angle of attack had the 
expected negligible effect on the flutter parameters as did 
the data at M«, = .8 and .85. 

In summary, the two degree of freedom flutter results 
for the NACA 64A006 airfoil, presented here, demonstrate the 
crucial importance of the transonic speed range with respect 
to airfoil flutter.  A thorough examination of three degree 
of freedom flutter would require the generation of unsteady 
aerodynamic coefficients over a more extended range of reduced 
frequencies than were considered in the present work. 
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8,0    CONCLUSIONS 

In this report, a treatment of unsteady transonic flow 
as a small perturbation about the nonlinear small disturbance 
steady flow is presented.  The technique has been applied to 
representative airfoils oscillating at subsonic, through tran- 
sonic to supersonic Mach numbers.  It is shown that the present 
theory matches linearized unsteady subsonic or supersonic theory 
as Mach number decreases or increases away from sonic respec- 
tively.  The theory includes the effects of thickness and angle 
of attack which are ignored in linear theories but which, as 
the results presented here demonstrate, are significant in the 
low frequency unsteady transonic speed regime.  A measure of 
the efficiency of the computational scheme is given by the fact 
that the matrix of calculations required to generate unsteady 
aerodynamic coefficients for a transonic flutter study of a 
three degree of freedom, two dimensional airfoil can be com- 
pleted in about 1 and 1/4 hours of CDC 7600 time. 

As a result of the research reported here, the method 
has been generalized to treat higher frequency effects, super- 
sonic freestream flows, wind tunnel walls and to perform three 
dimensional planar wing calculations.  The method is currently 
in a state of development that the study of such effects is 
routine using computer programs developed during the study. 
The method is somewhat limited by a numerical instability 
which develops for freestream Mach numbers very near Mach 1, 
but a wide range of supercritical flows may be successfully 
calculated.  A possible resolution to this instability has 
been postulated based on an inner/outer expansion analysis 
for near sonic Mach numbers but its implementation would re- 
quire further development effort. 

The results presented here indicate that the theory 
and numerical solution method provide a meaningful represent- 
ation of inviscid transonic flows about practical airfoils 
for reasonable amplitudes of unsteady motion.  The results 
are shown to compare adequately with the "exact" numerical 
calculations or Magnus and Yoshihara for Low frequency un- 
steady supercritical flows, for an expendxfare of over two 
orders of magnitude less computer time.  Although these com- 
parisons show some qualitative differences in unsteady airfoil 
pressure perturbations, unsteady aerodynamic forces compare 
very well in both amplitude and phase.  Detailed comparisons 
of the present results to limited available two dimensional 
experimental data shows good qualitative agreement.  Quanti- 
tative discrepancies would seem to be related mainly to viscous 
effects, not accounted for in the model, and to possible wind 
tunnel wall or three dimensional flow effects in the data. 
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A brief study of such effects indicates that, as expected, 
they can be quite significant in the transonic speed range. 

The need for an accurate and efficient method for cal- 
culating unsteady aerodynamic coefficients at transonic speeds 
is pointed out by the flutter dynamics »t«^ ??••«*•* lJ1*

hii 

report.  Aerodynamic coefficients were calculated using the 
present method and used in a flutter analysis of a NACA 64A006 
Sith?hree rigid body degrees of freedom (pitch, plunge, con- 
trol surface dotation) and of a NACA 64A410 with two rigid body 
degrees of freedom (pitch, plunge)  The results show the ex- 
pected critical effect of the transonic regime on flutter speed. 

It seems clear that viscous effects are quite important 
for unsteady flows in the transonic speed regime,  ^e compar- 
ison of the present inviscid results to data, given above, in- 
dicate that the inclusion of viscous effects is crucial to the 
practical accuracy of an unsteady transonic theory  The modest 
computer time requirements of the present small disturbance 
theorv  make it a potential candidate for the production of 
such effects and it is recommended that this be the next area 
for further development of the method. 
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APPENDIX A 

FARFIELD BOUNDARY PRESCRIPTIONS 

In the solution technique presented in this report, 
a solution field of finite extent is defined.  The comple- 
tion of the finite difference analogs to the steady and un- 
steady transonic flow problems, require that boundary con- 
ditions be fixed in some manner on the farfield boundary. 
In this report, calculations are performed for two dimen- 
sional airfoil sections in subsonic or supersonic free air 
or constrained by solid or porous wind tunnel walls and for 
three dimensional planar wings in subsonic free air flows. 
In each case a different farfield prescription is required 
and the purpose of this appendix is to summarize, for com- 
pleteness sake, the asymptotic solutions used to fix these 
farfield boundary conditions. 

A.l   Two-Dimensional Airfoil in Free Air 

The basic method used to develop asymptotic solutions 
for the steady or unsteady perturbation potentials involves 
the integral representation which results from applying 
Green's theorem to the appropriate partial differential 
equation.  Suitable approximations are made to the integral 
expressions valid far from the airfoil and a farfield solu- 
tion results.  Results for steady and unsteady free air flows 
are presented below. 

A.1.1 Steady Free Air Flows 

The farfield for the non-linear steady potential was 
examined in the manner mentioned above initially by Cole^2 
and most extensively by Klunker29f whose result is used. 
The farfield representation describes thickness and lift ef- 
fects to leading order and is given by: 
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<l>Jf{x,y) = 
Tr/iF x2+Ky2 '•' •/*' 

) dldn 

+ Yjarctan   
|       /K y 

(A.l) 

+ 2 sgn y[ 
x2+ Ky2^«> 

where t(C) is the airfoil thickness distribution.  The doublet 
strength due to the nonuniform flow is given by the integral of 
(4)x)2 over the solution field.  This is evaluated periodically 
as the iterative solution pioceeds using a trapezoidal rule in- 
tegration scheme.  Similarly»in calculations with lift, the air- 
foil circulation, y,   is updated. As the doublet strength and 
circulation are refined, Eq. A.l is used to update <b0  on the 
boundaries of the finite difference grid.  Thus the farfield 
boundary condition depends on the numerical solution and is 
treated as a Dirichlet boundary condition. 

For supersonic freestream Mach numbers, an approximate 
characteristic relation can be developed from either the inte- 
gral equation or the governing partial differential equation. 
This was done for steady flows by Murman22 and for unsteady 
flows by the present authors^).  This characteristic condi- 
tion is thus used to define a boundary condition on the farfield 
boundaries.  It is assumed that the disturbance from the body is 
weak so that the characteristic relation on the incoming charac- 
teristic applies.  The first order approximation to the relation 
is given and the farfield boundaries are treated as follows: 

0» = + /HK 4»° on y = ± oo 

0  = AO  = <DU ■ <j) as x -> -0° (A.2) 

4.° = 0 *x as x -»• +<» 

The upstream boundary (x ♦ -») is taken ahead of the bow shock 
so that the flow is uniform. Because of the backward differen- 
cing used for supersonic grid points, no prescription is re- 
quired on the downstream boundary (x ♦ +00) as long as the 
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boundary is completely supersonic.  If durimj the iteration 
procedure a grid point on the boundary becomes subsonic, a 
zero gradient (^x ■ 0) condition is used.  The above condi- 
tions are incorporated in the finite difference procedure as 
a Dirichlet condition on the upstream boundary and using one 
sided finite difference equations for the gradient conditions 
on the top and downstream boundaries. 

A.i.2  Unsteady Free Air Flows 

In the same manner as the steady flow, the farfield 
boundary conditions for the unsteady perturbation potential 
in the low frequency regime are defined from an asymptotic 
expression for subsonic freestream flow and an approximation 
to the unsteady characteristic relation for supersonic free- 
stream flows.  For subsonic flow the asymptotic expression is 
used to fix values of (j) in the Dirichlet sense on all four 
boundaries of the grid.  The expression was derived in Refer- 
ence 1 and is given by: 

4/K (j)ff(x,y) 
- - fik 

1     A 
A /  -ikr 

/ AcMUdC+e 

A 
-ik tt     H2{R ) ikx  i  I 

(A.3) 

+ I +1    for R1>>1 
1      2 

where Ij is given by: 

I -v— e 1  /? 
JLA*- 

S(IV)v>_!n_ ( -   . 
i) d_ä (A.4) 

sdijj 

where 

S(R) = VR2-K^2y2 + R 
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sn"}i(s2-Kk2y2_) 

(S2+Kk2y2) 
g(S) " 7Z£ÜJ^*fr* 

(IA-I^ nfi-32K.. fl6-(2n-l)2] 
an = n! 22n 

and I  is: 
2 

for x ^ 1 

-/ 

k/K y 

sin /R
2
-^ 
 HMR) 
2v2    -^r  dR 

for x > 1 

(A.5) 

where k = Ü/K,   R 
A 

.= k vAx-l^+Ky
2 and H. il  is the Hankel function 

of the second kind of ith order.  The integral cannot be eval- 
uated in closed form but, since it is over a finite range, 
it can be integrated numerically with little difficulty.  It 
is noted that the farfield approximation depends on the solu- 
tion through the airfoil circulation y  and also through the 
"airfoil integral".  Thus as the airfoil circulation and po- 
tential distributions are refined, the farfield is periodi- 
cally updated using equation A.3-A.5. 

Supersonic freestream flows are treated in a analagous 
manner to the steady flow.  A low frequency unsteady character- 
istic condition has been developed20 and is used along with up- 
stream and downstream conditions as farfield boundary conditions. 
The relations are: 

(\     /7K/ X
     /-K  ) 

on y =  + oo 

(A.6) 
<l> = <j>x = o as x ->■ -a 

*x  l   0 as x -•■ +00 
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A.2 Two-Dimensional Airfoil Between Wind Tunnel Walls 

The effect of wind tunnel walls in the steady and un- 
steady flow is of considerable concern especially for tran- 
sonic flows and the effect can be modeled by treating the 
appropriate boundary conditions at the wall and far upstream 
and downstream. 

A linearized boundary condition which relates the nor- 
mal velocity at the wall to the local pressure is used in the 
present study for general porous walls (solid walls are con- 
sidered as a special case).  Also asymptotic expressions valid 
for upstream and downstream have been developed for subsonic 
upstream flow.  In the present work a farfield expression for 
solid walls has been developed and is used in the general case. 
The expression results from the superposition of a infinite 
sequence of doublets and vortices (of alternating signs) each 
separated by the scaled distance between the walls, h.  This 
solution is used to fix a Dirichlet boundary condition on the 
upstream and downstream boundaries of the finite difference 
grid.  The resulting set of boundary conditions for subsonic 
steady flow are: 

4^ = + P tf>x  on y = ± h/2 

<i)l(:(*,y)  = — Re  ; coth 'ff hK 

7T(x-t-i/K y) 

h/IT i 
(A.7) 

Jt v» " arctan 
I 

iry 
sin -ff- 

n 

sinh TTX 

/Kh J) as x -•■ ± o0 

where 

=y   tUMC + 
00    "/ h/2 

2 
(♦JjJ dndE; 

and where P is the wall porosity coefficient. As before, the 
doublet strength, V,  and the airfoil circulation Y are refined 
as the solution proceeds and used to update the farfield. As 
stated above, the wall boundary condition is treated as the 
first order (linear) relation between the perturbation velocity 
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normal 

static 
at the 
slotted 
tion is 
wall (4) 
ratio, 
P  is: 

to the wall and the local pressure coefficient (C = 
assuming the plenum pressure is equal to the freeStream 
pressure.  For solid wall note that P=0 so that (J>0 = 0 
wall.  An Approximation for P for general porous ^r 

1 walls can be developed by assuming the boundary condi- 
^he weighted average of a free jet {<i>°=0)   and a solid 
y=0) where the weighting factors are the open area 
S, or 1-S respectively.  The resulting expression for 

P = S 
1-S 

ni+Y)6M'] 
1/3 (A.8) 

The boundary conditions for the wall case with super- 
sonic upstream flow can be treated in a simple manner as long 
as the upstream and downstream boundaries are defined far 
enough from the airfoil.  In this case the wall condition is 
the same as given in Equation A.8 and the upstream condition 
is taken as uniform flow.  No downstream condition is required 
due to the absence of upstream influence.  Thus the boundary 
conditions became: 

i0 = ± P A 
y     vx 

4>0= ♦- ■ 0 

on y = ± | 

as x -^ -o» 

(A. 9) 

In each of the above cases, the gradient boundary condition 
is treated by using a one sided finite difference approxima- 
t ion. 

In the present work, the farfield boundary conditions 
for the unsteady perturbation potential are treated in the 
same manner as the supersonic steady case.  The wall condition 
is modified to allow phase changes between the unsteady per- 
turbation velocity normal to the wall and the unsteady pressure 
At upstream and downstream infinity a zero gradient condition 
is assumed to apply.  This is believed to be accurate for the 
low frequency unsteady conditions considered, and the adequacy 
of the approximation has in fact been verified for the quasi- 
steady (k=0) case for which a asymptotic solution exists 
(Equation A.7).  Thus the boundary conditions for both super- 
sonic and subsonic upstream flows are: 
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= ; P eiß* (j) = + P e*M* (4)  + ik4))   on y = + h/2 
y ■ 

(A.10) 

*x *   0 ,as x -»■ ± o» 

where ß* is the phase relationship between the unsteady velo- 
city normal to the wall and the unsteady pressure (-2 (cj) +ik4»)) . 
It is recalled that the ikct» term in the above expression is 
reglected in the low frequency approximation. 

A. 3   Three-Dimensional Planar Wing in Free Air 

y» C 

x,C 

Z,T) 

FIGURE A.l   THREE DIMENSIONAL WING COORDINATE SYSTEM 

The development of three dimensional subsonic farfield 
approximations for the steady and unsteady perturbation po- 
tentials proceeds in the same manner as described above for 
the two dimensional flow.  As before the method involves the 
approximation of various integrals over the winq and wake 
which result from the application of Green's theorem to the 
appropriate partial differential equation.  Again, Klunker 
has used the method to develop asymptotic solutions for the 
three dimensional steady flow and his result in the following 
form is used: 
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^f{x,y,Z) = -2¥^|jr ^ t(e,r1)d|dn| 

4Tr(yz+z^) 

/b 

-D 

Y(n)dn 

for y2+z2 -»■ <» (A.11) 

*/' 
Y(n) 

(z-n) +y5 
dn 

for x -»• + o» 

where R ■ I {x2+K(y2+z2) ]\ t(Cfn) is the wing thickness dis- 
tribution and Y^n) is the spanwise distribution of circulation. 

The development of an asymptotic solution for the un- 
steady perturbation potential follows the method of Klunker 
and is now described in some detail.  The field equation for 
the unsteady perturbation potential (Equation A.10) is written 
as: 

1,(4,1 " K<,,xx +*yy +*zz  " 2i^x  + kQ* 

'   K  Ox'x 

(A.12) 

The application of Green's theorem to the linear operator L 
and the use of wing and wake boundary conditions and weak 
shock conditions results in the following integral equation 
for ((): 
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<|>(x,y,z)  =//     &♦(€#»»)   #5 d^dn 
wirig 

oo 

7      Y(n)/ ♦i 
.-ikCC-D  dcdn 

soan 

wake integral 

(A.13) 

•/// 
U^) *; dCdndr, 

where | is the source solution to L[(()] - 0: 

^(x^y/zK,^^) - ^jfR w.f "■"■*■) 
where 

^=^(l+k) 

R= ^X- C)
2 +K[{y-ü2+(2-n)2 

(A.14) 

The use of the source function ^ in A. 13, '»^•«Ji»f ** T? 
un^ integral as a higher order term and after Of^f^J* 
manipulation and approximation (as x2+y2+2^«) of the various 
integrals results in the following farfield solution: 
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<t>ff(x,y,z)   = -j U   (1+i/R R) (*'■**)//] -A 
SK   IJ   J A(|)(C,n)e    K    dCdn 

-b 0 

+  X G  -ik(x-l) 
47! 

where 

and where 

Gi (x,y,2;n)+G2 (x.y^n)] /    Y (n 

( x->— 
b 

/    G1L(xfy,z;n)+G  (xfyfs»f))j     Y(n) 

)dn 

Z2-^        (A.15) 

dn 

for x-H-o 

Si   ■ 

G2   = 

-ikt KM    e i 

R(R-Mü(x-])] 

r    = /K[y2+(z-T1)
2] 

R     =  /(x-1)2+K[y2+(z-n)2l 

ti   - 
M^R-tx-l) 

GO 
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lx   in the equation, is an integral that can be evaluated using 
a rational approximation to its integrand and is presented at 
the end of the appendix. 

It is noted that both the steady and unsteady farfield 
solutions involve integrais over the wing and span which de- 
pend on the solution (A(J),Y).  These integrais are evaluated 
numerically as the numerical solution proceeds and the re- 
spective equations are used to update the values of the steady 
or unsteady potential on the farfield boundaries. 

The use of a rational approximation to evaluate the 
portion of the wake integral given as Ij above, results in 
the following function: 

-   u, 
I,   " 

-ikrlu, 

fi*n\ 
+  ikr 

11 

v=0 cv+ikr 

-(cv+ikr)|ui 
e 

i1- T^rr) Re u 

y/l+u' 

-ikru u. 
(A. 16) 

11 
..A 
ikr 

cv+ikr 

-(cv+ikr )u 

v=0 

u 

where 

A 
r   = 

[(1+Y)6M211/3 

W 
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and c = 0.372 with b. defined in the table, 

V b 
V 

0 1.0 

1 -0.2418 6198 

2 2.7918 027 

3 -24.9910 79 

4 111.5919 6 

5 -271.4354 9 

6 305.7528 8 

7 41.1836 30 

8 -545.9853 7 

9 -644.7815 5 

10 -328.7275 5 

11 64.2795 11 
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APPENDIX B . . 

SUMMARY TABLE OF UNSTEADY AERODYNAMIC FORCE COEFFICIENTS 

iwt 

FIGURE B.l DEFINITION OF AIRFOIL FORCES 

The unsteady aerodynamic force coefficients calculated 
by the method of this report are defined and tabulated in this 
appendix.  Results are presented for two airfoils, a NACA 64A00G 
and NACA 64A410 undergoing low frequency oscillations (k=0-»-0.2) 
in pitch, plunge and control surface rotation in the transonic 
speed range CM ■■•7S<»X*2)« 

Figure B.l above defines the airfoil section geometric 
and force parameters.  The definition of aerodynamic forces 
are defined positive for tail down pitch and control surface 
oscillations and positive for vertical translation down.  The 
forces are given by: 

L = q | CJ + (aCi + &c0 + fi'c, 
.) 

iwt (A.l) 
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M = q   c2< c" + I C°   +     /ctCm  +   ßC       +   S'C       ]   eiüit \ (A.2) 

'00 
)c0    +    /aC     +   ßC     +   Ö'C      \   ei(1)t^ 
(   n \    na nß nS'j ( 

N  =  q     C2   JC0    +    (aC     +   ßC     +   ö'C       \    e1(1)t ( (A.3) 

where q  is freestream dynamic pressure and a,ß,6l are the 
magnituSes of the unsteady oscillations in pitch, control 
surface and plunge.  Also, w is the frequency of oscillation 
and the corresponding reduced frequency is defined by k=wc/u 
It is noted that the reduced frequency and magnitude of plung- 
ing oscillation are based on airfoil chord. 

Tables of unsteady aerodynamic coefficients, so defined, 
now follow for k=0.0, 0.05, 0.1, 0.15, 0.2 for: 

•      NACA 64A006 (pitch, plunge, control surface modes) 

M^ = .8, .85, .9, .95, 1.1, 1.15, 1.2 

ct = 0° o 

M_ = .85 

a0 = 0°, 1°, 2° 

NACA 64A410 (pitch, plunge) 

M = .75, .8, .85 
00 

8, = 0« 

M  = .8 

a ■ 0°, 1°, 2° 
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